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Introduction
The proposed multi-objective optimization algorithm 
hybridizes random global search with a local 
refinement algorithm [1]. The global search 
algorithm mimics the Bayesian multi-objective 
optimization algorithm. The site of current 
computation of the objective functions by the 
proposed algorithm is selected by randomized 
simulation of the bi-objective selection by the 
Bayesian-based algorithm. The advantage of the 
new algorithm is that it avoids the inner complexity 
of Bayesian algorithms. A version of the Hooke–
Jeeves algorithm is adapted for the local refinement 
of the approximation of the Pareto front. The 
developed hybrid algorithm is tested under 
conditions previously applied to test other Bayesian 
algorithms so that performance could be compared. 
Other experiments were performed to assess the 
efficiency of the proposed algorithm under 
conditions where the previous versions of Bayesian 
algorithms were not appropriate because of the 
number of objectives and/or dimensionality of the 
decision space.
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NN is number of non-dominated solutions found by an 
optimization Algorithm. GD is computed as the maximum of 
distances between the found non-dominated solutions and 
their closest neighbors from the Pareto front. EI is computed 
as the maximum of distances between the true Pareto front 
and their closest neighbors from found non-dominated 
solutions.

Since the proposed algorithm and P-algorithm are 
stochastic, the test problems were solved 100 times. The 
mean values and standard deviations of the considered 
metrics are present in two columns of Table 1. Otherwise, 
the hyperrectangle partition based P-algorithm is 
deterministic, so its results occupy a single column for each 
test problem.
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The proposed hybrid algorithm
The multi-objective minimization problems:

are considered assuming that the feasible region 
(decision space) is a unit hypercube 
to which any hyperrectangular region can be 
rescaled.

The algorithm consists of two alternating 
counterparts carried out multiple times: random 
global search and local refinement of the Pareto 
front approximation found by the global search 
algorithm. The Bayesian global optimization strategy 
would be preferable because of the rational 
balancing of exploration and exploitation. However, 
the number of iterations (computations of the 
objective functions) of the Bayesian algorithms is 
considerably limited due to their inner computational 
complexity. The number of iterations is limited to 
several hundred for the standardly implemented 
Bayesian algorithms. The idea is to mimic the 
search strategy of the Bayesian algorithm without 
using a stochastic model of the objective functions 
and thus avoiding the basic computational burden. A 
randomized algorithm is proposed where the criteria 
for selecting a point for computing the objective 
functions are similar but much simpler than the 
Bayesian approach-based criteria [2]. The reduced 
computational burden allows a considerably larger 
number of iterations. The global search phase 
interchanges with the local refinement phase. The 
approximation of the Pareto front is refined by a 
version of the Hooke–Jeeves algorithm adapted to 
multi-objective optimization.  

The considered algorithm is initialized by the 
predefined number of computations of the objective 
functions at the random points uniformly distributed 
in the feasible region    . Let us consider the current 
start of global search; the set of points where the 
objective functions are already computed is denoted 
by                                           and the corresponding 
set     of      function     values   is                              .
Non-dominated points of     constitute current Pareto 
optimal   solutions   set  in   objective   space 
and corresponding Pareto optimal solutions set in 
decision space              .

Strategies to mimic Bayesian search should 
combine simplicity and numerical substantiation. 
Combining both mentioned properties the 
exploration-exploitation strategy can be used, i.e. let 
say   new   random   points  

 

 

are uniformly generated in feasible region      (            is 
parameter value) and for every point        bi-
objective selection functions calculated:
           is a generated point’s     Euclidean distance 
to the closest known point               and          is the 
closest known point’s                function evaluation 
vector’s                  Euclidean distance to the closest 
current Pareto optimal solution       . The 
exploration-exploitation strategy is achieved by 
making new function evaluations at points                
having minimal trade-off Pareto optimal values of 
selection functions                            . Function
 has a negative sign because it is maximized. After 
new   function   evaluations   are   made,   the   sets  
                    are updated and reused in next phases 
and next iterations. To induce function evaluations 
clustering near Pareto optimal solutions, the global 
search has two random points generation modes: 
global uniform generation in all feasible region     
and local generation near current Pareto optimal 
solutions.

The proposed exploration-exploitation global search 
strategy lacks effective local refinement since 
randomly generated points lack improvement 
direction. On the contrary, the Hooke–Jeeves single-
objective optimization algorithm searches function 
improvement direction by taking a step in all 
decision variables [3]. A multi-objective optimization 
problem is reduced to a single-objective 
optimization problem by novel approach without the 
use of the weight vectors.

The multi-objective function is converted to a single-
objective surrogate function                   ,  which has 
a current solution: a decision vector         and multi-
objective function evaluation vector           . Initially, 
the surrogate function has value                 .   When 
the new solution         dominates the current solution
                        ,  the  surrogate  function  value   at 
new location       decreases                                 and 
the current solution is updated                 . Otherwise 
when the new solution    does not dominate the 
current solution the surrogate function value at new 
location       remains the same                           and 
the current solution       is not updated, i.e.,

 

For every current Pareto optimal solution              a 
separate surrogate function having Pareto optimal 
solution as current solution              is defined. Every 
defined surrogate function is optimized using the 
Hooke–Jeeves optimization algorithm taking      as 
the start point:

The global search phase interchanges with the local 
refinement phase multiple times. The algorithm 
works until the maximum allowed number of 
function evaluations or the maximum iteration 
number of global searches with local refinement is 
reached. The algorithm returns a set of all function 
evaluations and a set of non-dominated Pareto 
optimal solutions.

Conclusions

The hybrid multi-objective optimization algorithm is 
proposed combining random global search and local 
refinement of the found approximation of the Pareto front. 
The global search algorithm mimics the Bayesian 
algorithm. The Hooke–Jeeves algorithm is used for local 
refinement. At the local optimization phase, the multi-
objective optimization problem is converted to a single-
objective optimization problem by introducing a surrogate 
function without the use of the weight vectors. The 
developed algorithm was tested in the case of extremely 
low functions evaluation budget, and the proposed 
algorithm gives decent performance comparing results 
with the results of Bayesian rooted optimization 
algorithms. Also, the proposed optimization algorithm was 
tested with many decision variables test suite and with 
many-objective test suite, and the results of numerical 
experiments showed good performance compared with 
the results of popular evolutionary optimization algorithms 
NSGA2 and NSGA3. In the case of many-objective 
optimization, the proposed algorithm need no predefined 
reference points, so raw solutions selection can be done 
by a human expert to be tuned to final solutions of needed 
properties. Future plans include the development parallel 
version of the proposed algorithm to optimize functions 
with an extreme computational burden. Another research 
theme of interest is integrating the proposed algorithm 
execution with human expert decisions to get solutions of 
needed properties.
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Numerical experiments 
In case when experiments have low functions 
evaluation budget, the results of the proposed 
algorithm were compared with the results of Bayesian 
rooted optimization algorithms: standard and 
partition-based implementations of the P-algorithm 
[4]. First bi-objective test problem is solved to 
illustrate the performance:

The second bi-objective test problem is two Shekel 
functions frequently used to evaluate global 
optimization      algorithms.    For    the     comparison 
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performance    NN, GD, EI  metrics   applied.   Where NN is 
number of non-dominated solutions found by an 
optimization Algorithm. GD is computed as the maximum of 
distances between the found non-dominated solutions and 
their closest neighbors from the Pareto front. EI is computed 
as the maximum of distances between the true Pareto front 
and their closest neighbors from found non-dominated 
solutions.

Since the proposed algorithm and P-algorithm are 
stochastic, the test problems were solved 100 times. The 
mean values and standard deviations of the considered 
metrics are present in two columns of Table 1. Otherwise, 
the hyperrectangle partition based P-algorithm is 
deterministic, so its results occupy a single column for each 
test problem. In case of first problem  the proposed 
algorithm gives better NN and EI values than the P-
algorithm. In case of second problem the proposed 
algorithm gives the best NN value and gives better GD and 
EI values than the hyperrectangle partition-based P-
algorithm.

Table 1. Mean values and standard deviations of 
performance criteria (NN, GD, EI).

Numerical experiments using test problems having many 
decision variables and using test problems having many-
objective function are performed. Due to limited format of 
poster presentation results are not presented here, but can 
be found in [1].
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