
Automatic Tumor Identification Using Deep Neural Network

Edita Mažonienė, Mantas Kundrotas, Dmitrij Šešok

Vilnius Gediminas Technical University, Vilnius, Lithuania

14th International Conference „Data Analysis Methods for Software Systems“

November 30th – December 2nd, 2023, Druskininkai, Lithuania

Summary: In this research, we aimed to integrate machine learning (ML) deep neural network (DNN), especially convolutional neural network

(CNN) for image analysis in histopathology and cancer research. For this work, the ResNet, DenseNet, MobileNet, EfficientNet, Inception

architectures were used from the Tensorflow library, also, mentioned models were already trained on the ImageNet dataset. Using our adapted U-

net model (M-model) we managed to reduce model size and increase the accuracy from 0.95491 to 0.95515 AUC. Moreover, the result increased to

0.96870 with the TTA method, and 0.96977 with the addition of the multi-model ensemble. After corrections of image processing parametres AUC

increased by 3%, which become 0.96664 AUC and final model result was 0.97673 AUC.

One public image classification dataset was used:

• PatchCamelyon 2020.

INTRODUCTION

Careful identification of tumors, especially at an early stage, requires

extensive expert knowledge, so that cancerous tissue is often

identified only after it has been affected. Expanding the ability to

identify more precise ML methods and techniques for detecting tumor

damaged tissues in histopathology surveys has been a key objective

of our study.

DATASETS

Fig. 1. Research flowchart

CONCLUSIONS

In this work, we proposed to use Ml and different neural network techniques

to find a solution to WSIs histopathological data analysis. Our extensive

experiments showed that the application of artificial deep neural networks

(TTA+ResNet Assembly) for the classification of medical images,

compared to other classical methods, are superior in almost all criteria.

Dataset:

PatchCamelyon

2020

ML M-model

training based on

U-Net.

Changes of

Network

Structure

(ReLu PreLU)

Regularization

applied

Model

improvement

(MS-model)

Comparisation of

the results

„Patch Chameleon

rankings“

5th place

Addition of

Dropout Layer

Comparison of the

results

RESULTS

Table 1. Dataset features

Table 6. Summary results

Data processing

(cropping, flipping,

rotion, contrast

etc.)

Features

Amount of Images 327680

Pixels Size 96x96

Labels Yes (positive/negative)

Training Images 6.1 GB

Valid Images 0.8 GB

Test Images 0.8 GB

Balance between positive and negative 50/50

Xavier’s

algorythm

Optimization of

Hyper

Parameters

RESEARCH PLAN AND ALGORITHMS

Model Architectures Optimization Methods

DenseNet121 SGD

ResnNet50 Adam

ResNet50 V2 AdamW

MobileNetV1, MobileNetV2 Ranger

Inception

EfficientNetB0, EfficientNetB1

EfficientNetB0 V2, EfficientNetB1 V2

AUC (Area under the Curve)

Ensemble Type AUC Difference

DenseNet121 0.95672 -

M-model training 5 outputs
together

0.95405 −0.267%

M-model training 5 outputs
separately

0.95491 −0.1891%

MS-model 0.95508 −0.164%

MS-model with AdamW 0.95515 −0.157%

MS-model with repeated training 0.95911 0.239%

MS-model TTA 0.96870 1.198%

MS-model ensemble 0.96592 0.920%

MS-model connecting weights 0.96240 0.568%

TTA + weights and models
ensemble

0.96922 1.250%

MS-model after corrections 0.96147 0.475%

MS-model after corrections with
repeated training

0.96675 1.003%

Group of ensembles from all
experiments

0.96977 1.305%

Optimized ensemble based on the
best model

0.97673 2.001%

Table 2. Architectures and optimization methods

Fig. 3. E-module based on ResNet

block design.

Fig. 2. The M-model based on the

U-Net network architecture.

AUC (Area under the Curve)

Model ImageNet Weights Xavier Initialization Weights

DenseNet121 0.95672 0.94560

ResNet50 0.95078 0.94380

ResNet50 V2 0.95078 0.94380

MobileNetV1 0.94954 0.93855

MobileNetV2 0.95065 0.95395

Inception 0.94697 0.94608

EfficientNetB0 0.95121 0.94608

EfficientNetB1 0.93876 0.94608

EfficientNetB0 V2 0.94570 0.75981

EfficientNetB1 V2 0.94287 0.79871

Table 3. Model architectures analysis results.

Learning Iteration AUC

Reusing weights 0.95501

New initialization 1 0.95498

New initialization 2 0.95508

New initialization 3 0.95505

Table 4. MS-model results.

Learning Iteration AUC

SGD 0.95510

Adam 0.95475

AdamW 0.95515

Ranger 0.95500

Table 5. Comparison of optimization methods.

	Skaidrė 1

