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Abstract

Conventional UAV (abbr. Unmanned Air Vehicle) auto-pilot systems uses GPS signal
for navigation. While the GPS signal is lost, jammed or the UAV is navigating in GPS-
denied environment conventional autopilot systems fail to navigate safely. UAV should
estimate it’s own position without the need of external signals. Localization, the process
of pose estimation relatively to known environment, may solve the problem of naviga-
tion without GPS signal. Downward looking camera on a UAV may be used to solve
pose estimation problem in combination with visual odometry and other sensor data.
In this report a vision-based particle filter application is proposed to solve GPS-denied
UAV localization. The application uses visual odometry for motion estimation, correla-
tion coefficient for apriori known map image matching with aerial imagery, KLD (abbr.
Kueller-Leiblach distance) sampling for particle filtering. Research using data collected
during real UAV flight is performed to investigate: UAV heading influence on correlation
coefficient values when matching aerial imagery with the map and measure localization
accuracy compared to conventional GPS system and state-of-the-art odometry.

Keywords: Particle Filter Localization, GPS-Denied Navigation, Visual Odometry,
KLD Sampling, Correlation Coefficient
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1 Introduction

GPS signal used for UAV navigation is vulnerable to signal jamming and spoofing
[KSBH14]. Encoded military standard GPS signals are safe against spoofing, although
they are still vulnerable to jamming and are not publicly available. Conventional autopi-
lot systems fail to navigate safely since there is no available alternatives to GPS position-
ing. UAV should estimate it’s own position without the need of external signals. Local-
ization, the process of pose estimation relatively to known environment, may solve the
problem of navigation without GPS signal. Particle filters have solved localization prob-
lem for autonomous robots [Thr02] using laser scanners and panoramic vision [ATD05].
Mixed particle filter algorithm may address robot localization issue with better preci-
sion over long distance and long duration flights. Algorithm enables navigation in GPS-
denied environment and contributes to UAV safety as a GPS backup system.

2 Vision-based particle filter localization

This paragraph shows the theory behind particle filter localization and algorithms used
in particular steps particle filtering. Fig. ?? shows the schema of the proposed algorithm.
Each step is described in subsections in details.

2.1 Particles

Particle is a hypothesis for the aircraft’s possible position in map. A number of particles
is maintained in the algorithm to evaluate more than one possible location of the aircraft
and propagate the possibilities over time. Each particle is assigned an image similarity
value on time t

bt = bt−1
Rt + 1

2

that is calculated using UAV image similarity valueRt with the map image on the particle
location. Initial particle density value is assigned b0 = 1. Particles are also assigned
weight value which is used during sampling. The particle weight wi is calculated by
normalizing all probabilities wi,t =

bi,t∑n
j=0 bt,j

, where n is the number of particles, i is single
particle index, t is time of current iteration.

2.2 Particle sampling

Sampling is the stage of the Particle Filter when particles are re-sampled according to
their weight. Each iteration re-samples particles to find the most plausible UAV location
over time. KLD-sampling technique was selected due it’s to ability to dynamically adjust
particle count thus reducing computational costs when it is not necessary. Sampling uses
Kueller-Leiblach distance [Fox01] to calculate minimal number of particles that keeps
particle probability distribution the same. The technique has shown good results against
other sampling techniques on simulated flight data - it provides the same localization
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accuracy, but dynamic particle count allows to decrease computational times up to 1.7
times [JMT16].

2.3 Odometry

Visual odometry is the process of calculating aircraft (or robot) motion from camera im-
ages. In this setup monocular SVO [FPS14] (abbr. Semi-direct Visual Odometry) with
downward facing camera is used to calculate motion. SVO algorithm was selected due
to high accuracy compared with other algorithms and real-time execution on embedded
is possible due to semi-dense algorithm implementation.

SVO algorithm was selected because of more accurate positioning compared to other
algorithms and real-time execution on embedded platforms. SVO algorithm was shown
to run 55 frames per second on an embedded flight computer.

2.4 Motion model

Motion model is used for dead-reckoning of the UAV pose from odometry data (visual
and movement speed sensors). The UAV pose may be described using six parameters
〈x, y, z, θroll, θpitch, θyaw〉 in space relative to the known environment. Parameters x, y and
z are the coordinate locations in 3D environment. Parameter z is equivalent to altitude,
which can be measured using sensors (barometer, laser) with relatively high precision.
In the case of localization in orthophoto map the altitude is only required for image pixel
scaling, so it can be ignored during localization. Roll and pitch angles are required for the
calculation of camera relative elevation angle and image center on the map. Those param-
eters can be ignored by using camera gimbal hardware in the case if camera is configured
to always look downward. The search space thus is narrowed down to pseudo-planar
movement using only three parameters (see fig. 1), where aircraft pose Pt = 〈x, y, θyaw〉,
where θyaw is UAV heading angle (UAV platform angle to North). Figure 1 shows planar
movement of the particle with appriori position 〈x, y, θ〉 and posteriori position 〈x′, y′, θ′〉.
Particle movement is described as translational movement δ̂tran = δtran + εtran, where

• δ̂tran is planar movement with an extra noise

• δtran is measured movement change measured by sensors (usually odometry)

• εtran is additional random noise value

Rotational movement is described as δ̂rot = δrot + εrot, equation explanation is analogues
to translational movement.

The pose update can be calculated after new sensor data using these equations
[TBF05]:

x′ = x+ α1δ̂trancos(θyaw + α3δ̂rot)

y′ = y + α2δ̂transin(θyaw + α3δ̂rot)

θ′yaw = θyaw + α3δ̂rotMII-DS-07T-17-10 5



Figure 1: Simplified planar motion model for UAV

, where:

• x′, y′ and θ′yaw are posterior UAV location relative to the orthophoto map

• αn - measurement noise scale coefficients, selected manually

• δ̂tran - translational (movement speed) measurement with measurement noise εtran,
obtained:

δ̂tran = δtran + sample_normal(εtran)

• δ̂rot - rotational (heading angle) measurement with measurement noise εrot, ob-
tained:

δ̂rot = δrot + sample_normal(εrot)

• sample_normal is Gaussian distribution sampling function:
sample_normal(ε) = ε · gaussian(0, 13)

2.5 Particle propagation

This step of the Particle Filter uses sensor data, odometry and motion model to propagate
the particles after re-sampling. Propagation moves the old re-sampled particles into their
current locations according to movement that happened since last Particle Filter iteration.

2.6 Particle map matching

Template matching technique is used to match image viewed by the camera and cropped
image from map on the particle pose. Matching is done using monochrome gray scale
images to make the matching faster. The pixel gray scale value y is calculated using
formula from OpenCV library [BK08]:

yx,y = 0.299rx,y + 0.587gx,y + 0.114bx,y

, where rx,y, gx,y and bx,y are the respective red, green and blue pixel values on image x
and y coordinates. Normalized correlation coefficient (CCOEFF) from OpenCV [BK08]
library was used to calculate image similarity Rt on time t between camera image T and
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cropped map image I :

Rt =

∑w
x=0

∑h
y=0(T

′(x, y) · I ′(x, y))√∑w
x=0

∑h
y=0 T

′(x, y)2 ·
∑w

x=0

∑h
y=0 I

′(x, y)2

, where

• T ′(x, y) = T (x, y)−
∑w

x′=0

∑h
y′=0 T (x′,y′)

w·h

• I ′(x, y) = I(x, y)−
∑w

x′=0

∑h
y′=0 I(x

′,y′)

w·h

• w, h are the image dimensions (width and height).

2.7 UAV Pose Estimation

True location of the UAV is calculated by recursively estimating particle belief density
values as described in [TBF05]. Belief is calculated for each particle as conditional proba-
bility

bel(Pt) = p(Pt|P0:t−1,m1:t−1, b1:t−1)

, where
• Pt - predicted aircraft pose on time t

• mt - sensor data (may be IMU, barometer, wind speed and other data used for dead-
reckoning) on time t

• bt - previously described particle probability value on time t
The belief is a probability on location Pt, conditioned on all previous sensor data and

all particle probability density values. The particle with highest belief is considered to be
the true UAV pose for current iteration.

3 Experimental results

This section describes experimental environment, hardware components used for data
collection and obtained results

3.1 Experimental setup

A fixed-wing UAV was used to collect aerial imagery and sensor data during 1 km flight.
Basler acA640-120uc industrial camera with global shutter was used to collect aerial im-
agery alongside with other sensor data provided from UAV flight controller. Images was
recorded in 640x480 resolution at 90 FPS. Data was recorded using MPEG2-TS video for-
mat and sensor data was recorded as meta-data alongside the video stream. The video
playback allows data to be read with the same timing as it was recorded on UAV. Map
used for matching was downloaded from Google Maps [Sve10] using highest available
zoom level. Initial particle count for the particle filter was set to 500.
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Figure 2: Correlation coefficient values when matching map with aerial imagery on all
heading angles.

3.2 UAV Heading impact on correlation coefficient

This section investigates magnetometer error impact on correlation coefficient since it
was noticed during localization experiment. Typical magnetometers used in UAV’s may
contain noise in measuring heading direction. Fig. 2 presents correlation coefficient val-
ues for 6 images captured during real flight and matched with according orthophoto map
images. Table 1 contains average similarity change values versus heading change. Data
from table 1 suggests that +/- 2 degrees of heading angle error can be ignored, because it
affects correlation coefficient only up to 10% on average.

Table 1: Heading change impact on similarity coefficient

Average similarity
Heading change, ◦ change, %

+10 67.78

+5 34.59

+2 9.38

-2 10.15

-5 35.49

-10 62.08

3.3 Localization accuracy

In this section we will evaluate localization accuracy compared with conventional GPS
positioning system and pure visual odometry positioning. Accumulated odometry error
correction is expected when using particle filter in combination with odometry. Flight
trajectory reconstruction using odometry and particle filter localization is presented in
fig. 3. Trajectory errors in meters are presented in fig. 4, the plot shows that odometry
suffers from cumulative errors as it was introduced in the introduction of the report.
MII-DS-07T-17-10 8



Figure 3: Flight trajectory reconstruction using odometry (red), particle filter (green) and
conventional GPS sensor (blue).

Figure 4: Particle filter localization and visual odometry absolute errors.
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The dashed lines are the trend-lines of the errors, the vertical line show the breaking
point of the trend-lines at 35 seconds flight time. Since the breaking point of accuracies
shows that proposed algorithm adds a lot less errors during long time flights. Additional
experiments are required to validate whether errors won’t add up after longer flights.
Particle filter localization was able to keep error values in around 50 meter range. After
the 1 kilometer flight the final error was reduced by a factor of 2 compared to localization
from visual odometry only. Proposed algorithm error trend-line slope is reduced by a
factor of 11 times compared with visual odometry.

4 Conclusions and future work

This report analyses an application of particle filter for UAV localization in previously
known orthophoto map using images from downward facing camera on the UAV plat-
form. The obtained results concludes:

• Flight heading error +/- 2 degrees causes correlation coefficients errors in up to
10% range. Particle filter execution was done with +/- 5 degree uncertainty in UAV
heading.

• Experiment on real flight data shows that particle filter is able to reduce the slope
of accumulating errors with a factor of 11 times compared to visual odometry.

• At the end of experimental flight, particle filter localization allowed to improve
position precision by a factor of 2 compared with position from odometry data only.

Future work in the field of this report would include algorithms that could reduce
the impact of errors in sensor measurements. An alternative image similarity coefficient
based on deep learning can be proposed in replacement of correlation coefficient to im-
prove localization accuracy of the algorithm.
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