

INFORMATICS ENGINEERING (07 T)

THE RESEARCH ON MODEL

TRANSFORMATIONS, BASED ON

DOMAIN METAMODEL, FOR

DESIGNING REQUIREMENTS

SPECIFICATIONS

Neringa Makrickienė

October 2017

Technical Report MII-DS-07T-17-10

Vilnius University

INSTITUTE OF MATHEMATICS AND

INFORMATICS

L I T H U A N I A

MII-DS-07T-17-10 2

VU Institute of Mathematics and Informatics, Akademijos str. 4, Vilnius LT-08663,

Lithuania

www.mii.lt

http://www.mii.lt/

MII-DS-07T-17-10 3

Abstract

In recent year ontologies – shared conceptualizations of some domain – are

increasingly seen as the key to further automation of information processing. There are

many applications of such an approach, e.g. automated information processing,

information integration or knowledge management, to name just a few.

Although many approaches for representing and applying ontologies have

already been devised, they still haven’t found their way into enterprise applications.

Ontologies, for software design and development, can be used with the

following objectives [29] [26]:

• Specification: ontologies are used to specify either the requirements and

components definitions (informal use) or the system´s functionality.

• Confidence: ontologies are used to check the system´s design.

• Reusability: ontologies could be organized in modules to define domains,

subdomains and their related tasks, which could be later reused and/or adapted to other

problems.

• Search: ontologies are used as information repositories.

• Reliability: ontologies could be used in (semi)–automatic consistency

checking.

• Maintenance: ontologies improve documentation use and storage for system’s

maintenance.

• Knowledge acquisition: ontologies could be used as a guide for the knowledge

acquisition process. Within Software Engineering, two main roles for ontologies have

been considered [30]:

• Ontologies for the Software Engineering Process: the definition, re–use and

integration of software components is aided by the use of ontologies as the conceptual

basis.

• Ontologies for the Software Engineering Domain: the use of ontologies to

describe the structure and terminology of the software engineering domain itself.

These are the key reasons why ontology is included in this research to represent

knowledge base. The main considerations in the research will be requirements

specification generation from ontology. Further work will include the research on

ontologies, their languages and tools, ontology based model transformations and

requirements engineering.

MII-DS-07T-17-10 4

Problem statement

The study of an information system requirements should result in the

establishment of well-defined functionalities and attributes agreed by the stakeholders.

If the functionalities are defined as incomplete or incorrect, the software may not meet

the expectations of users. Factors that could lead to an inadequate process of

requirements elicitation can be [37]:

- Ambiguous Requirements: which produce lost of time and

repeated work. Their origin resides in the diverse stakeholders, who produce

different interpretations of the same requirement. Moreover, one stakeholder

can interpret the same requirement in diverse ways. The ambiguity conduces to

mistaken product tests.

- Insufficient Specifications: they produce the absence of key

requirements. This conduces to developers' frustration, because they base their

work in incorrect suppositions and, so, the required product is not developed,

which displeases the clients.

- Requirements not completely defined: they make impossible the

project secure planning and its monitoring. The poor requirements

understanding leads to optimistic estimations, which return against when the

agreed limits are surpassed.

- Dynamic and changing requirements: which require constant

requirements revision in order to help to understand new clients needs and to

identify how they can be satisfied.

In order to reduce the negative effects of the previous factors on the RE

processes, the ontologies can be used. The potential uses of ontologies in RE include

the representation of:

- The requirements model, imposing and enabling a particular

paradigmatic way of structuring requirements;

- Acquisition structures for domain knowledge;

- The knowledge of the application domain [37].

An ontology-based requirements specification tool may help to reduce

misunderstanding, missed information, and help to overcome some of the barriers that

make successful acquisition of requirements so difficult [38].

MII-DS-07T-17-10 5

Object

The object of the research is a method on designing requirements specifications,

based on domain metamodel.

Goal and objectives

The main goal of the research is to propose the method for designing

requirements specification, in order to improve existing methods and to meet a standard

criteria of a good system requirements specification.

To meet this goal, several objectives arise:

1) To investigate the existing situation of requirements specification design

processes;

2) To make a research on using domain methodologies in requirements

engineering;

3) To present an improved methodology on designing requirements specification

that meets formal criteria;

4) To evaluate proposed method by conducting experiments based on the chosen

domain;

5) To propose results on the research.

Research methodology

Literature review, comparative analysis.

Results approval

1. Veitaitė I., Lopata A., Žemaitytė N. (2016) Enterprise Model based UML

Interaction Overview Model Generation Proces. 19th International Conference

on Business Information Systems, BIS2016 International Workshop, Series:

Lecture Notes in Business Information Processing. ISBN 978-3-319-26762-3.

MII-DS-07T-17-10 6

Contents

1. ANALYSIS ON DOMAIN METAMODELS PRACTISE, IN A CASE OF

SOFTWARE REQUIREMENTS SPECIFICATIONS MODELLING 7
2 Other activities during 2015-2017 year of study ... 54
3 References .. 55
4 Appendixes .. 60
1 Introduction .. 61

2 Enterprise Modelling and Ontologies relation ... 61
3 Transformation Algorithm ... 62
4 UML Interaction Overview Model Transformation .. 64
5 Conclusions .. 66
6 References .. 67

MII-DS-07T-17-10 7

1. ANALYSIS ON DOMAIN METAMODELS PRACTISE, IN A CASE

OF SOFTWARE REQUIREMENTS SPECIFICATIONS

MODELLING

1.1 The concept of requirements engineering

A requirement is a statement that identifies a product or processes operational,

functional, or design characteristic or constraint, which is unambiguous, testable, or

measurable and necessary for product or process acceptability (ISO 2007).

Requirements Engineering (RE) is concerned with the elicitation, evaluation,

specification, consolidation, and change of objectives, requirements, functionalities,

qualities, and constraints to be achieved by a software-intensive system. RE has the

objective to establish a complete, consistent and unambiguous description of

requirements (Requirements Specification) for a given application domain on an

abstract conceptual level. This incremental process involves stakeholders from different

backgrounds and requirements engineers.

Requirements Engineering is the branch of Systems Engineering concerned

with the development of requirements through a systematic, iterative and co-operative

process. This process includes the elicitation, negotiation, specification and validation

of requirements. It is also concerned with the relationship of these RE artefacts to

precise specifications of software behaviour, their evolution over time and across

software families. Requirements and all related artefacts are documented in a

Requirements Specification that needs to be validated regarding customer wishes,

correct understanding and accuracy [40].

MII-DS-07T-17-10 8

Reference: [40]

Fig. 1 Requirements Engineering Activities

Simplified process of gathering requirements is presented in Fig. above. The

process is presented as a circle, as every step can be repeated, due to problems in every

stage. The most important ones are Requirements elicitation and Requirements

analysis. In some cases these two stages are paired together, because they deeply

depend on each other. Problems in requirements elicititation could be misunderstanding

between client and system analyst, wrongly expressed and interpreted goals, processes,

domain knowledge. This leads to wrong requirements analysis process (or not

neccesserilly). Also, due to lack of knowledge and experience, process can trigger

problems in analysis stage, even elicitation was successful. This could be different

stakeholders produce different interpretations for the same requirement at this stage.

And repeated work is needed then. During requirements analysis and validation,

requirements specification document is prepared. In most cases, during analysis,

because validation is verifying with a customer if requirements meets their needs. In

this research we will focus on requirements analysis stage and how to improve it. But

by improving this stage, other stages should generate better results as well, as it is very

connected to each other, as we see in figure above.

Even the process shown is simplified, this does not mean, the process is simple.

According to SEBoK it includes more action points. Major activities and tasks during

this process include [77]:

 Analyzing the stakeholder requirements to check completeness of

expected services and operational scenarios, conditions, operational modes, and

constraints.

MII-DS-07T-17-10 9

 Defining the system requirements and their rationale.

 Classifying the system requirements using suggested SEBoK

classifications.

 Incorporating the derived requirements (coming from architecture and

design) into the system requirements baseline.

 Establishing the upward traceability with the stakeholder needs and

requirements.

 Establishing bi-directional traceability between requirements at adjacent

levels of the system hierarchy.

 Verifying the quality and completeness of each system requirement and

the consistency of the set of system requirements.

 Validating the content and relevance of each system requirement against

the set of stakeholder requirements.

 Identifying potential risks (or threats and hazards) that could be

generated by the system requirements.

 Synthesizing, recording, and managing the system requirements and

potential associated risks.

 Upon approval of the requirements, establishing control baselines along

with the other system definition elements in conjunction with established configuration

management practices.

A Software Requirements Specification (SRS) is a comprehensive description

of the intended purpose and environment for software under development. The SRS

fully describes what the software will do and how it will be expected to perform.

To the customers, suppliers, and other individuals, a good SRS should provide

several specific benefits, such as the following [IEEE Recommended Practice for

Software Requirements Specifications, IEEE Standard 830-1998, 1998.]:

Establish the basis for agreement between the customers and the suppliers on

what the software product is to do. The complete description of the functions to be

performed by the software specified in the SRS will assist the potential users to

determine if the software specified meets their needs or how the software must be

modified to meet their needs.

Reduce the development effort. The preparation of the SRS forces the various

concerned groups in the customer’s organization to consider rigorously all of the

MII-DS-07T-17-10 10

requirements before design begins and reduces later redesign, recoding, and retesting.

Careful review of the requirements in the SRS can reveal omissions,

misunderstandings, and inconsistencies early in the development cycle when these

problems are easier to correct.

Provide a basis for estimating costs and schedules. The description of the

product to be developed as given in the SRS is a realistic basis for estimating project

costs and can be used to obtain approval for bids or price estimates.

Provide a baseline for validation and verification. Organizations can develop

their validation and verification plans much more productively from a good SRS. As a

part of the development contract, the SRS provides a baseline against which compliance

can be measured.

Facilitate transfer. The SRS makes it easier to transfer the software product to

new users or new machines. Customers thus find it easier to transfer the software to

other parts of their organization, and suppliers find it easier to transfer it to new

customers.

Serve as a basis for enhancement. Because the SRS discusses the product but

not the project that developed it, the SRS serves as a basis for later enhancement of the

finished product. The SRS may need to be altered, but it does provide a foundation for

continued production evaluation.

Table 1. Characteristics of good SRS

Criteria Description

Correct An SRS is correct if, and only if, every requirement stated therein is one that the

software shall meet. There is no tool or procedure that ensures correctness. The

SRS should be compared with any applicable superior specification, such as a

system requirements specification, with other project documentation, and with

other applicable standards, to ensure that it agrees. Alternatively the customer or

user can determine if the SRS correctly reflects the actual needs. Traceability

makes this procedure easier and less prone to error.

Unambiguous An SRS is unambiguous if, and only if, every requirement stated therein has only

one interpretation. As a minimum, this requires that each characteristic of the final

product be described using a single unique term. In cases where a term used in a

particular context could have multiple meanings, the term should be included in a

glossary where its meaning is made more specific.

Complete An SRS is complete if, and only if, it includes the following elements:

All significant requirements, whether relating to functionality, performance, design

constraints, attributes, or external interfaces. In particular any external

requirements imposed by a system speci- fication should be acknowledged and

treated.

Definition of the responses of the software to all realizable classes of input data in

all realizable classes of situations. Note that it is important to specify the responses

to both valid and invalid input values.

Full labels and references to all figures, tables, and diagrams in the SRS and

definition of all terms and units of measure.

MII-DS-07T-17-10 11

Consistent Consistency refers to internal consistency. If an SRS does not agree with some

higher-level document, such as a system requirements specification, then it is not

correct.

Ranked for

importance

and/or stability

An SRS is ranked for importance and/or stability if each requirement in it has an

identifier to indicate either the importance or stability of that particular

requirement. Typically, all of the requirements that relate to a software product are

not equally important. Some requirements may be essential, especially for life-

critical applications, while others may be desirable.

Each requirement in the SRS should be identified to make these differences clear

and explicit. Identifying the requirements in the following manner helps:

- Have customers give more careful consideration to each requirement,

which often clarifies any hidden assumptions they may have.

- Have developers make correct design decisions and devote appropriate

levels of effort to the different parts of the software product.

Verifiable An SRS is verifiable if, and only if, every requirement stated therein is verifiable.

A requirement is verifiable if, and only if, there exists some finite cost-effective

process with which a person or machine can check that the software product meets

the requirement. In general any ambiguous requirement is not verifiable.

Modifiable An SRS is modifiable if, and only if, its structure and style are such that any

changes to the requirements can be made easily, completely, and consistently while

retaining the structure and style. Modifiability generally requires an SRS to:

- Have a coherent and easy-to-use organization with a table of contents, an

index, and explicit cross referencing;

- Not be redundant (i.e., the same requirement should not appear in more

than one place in the SRS);

- Express each requirement separately, rather than intermixed with other

requirements.

Traceable An SRS is traceable if the origin of each of its requirements is clear and if it

facilitates the referencing of each requirement in future development or

enhancement documentation. The following two types of traceability are

recommended:

- Backward traceability (i.e., to previous stages of development). This

depends upon each requirement explicitly referencing its source in earlier

documents.

- Forward traceability (i.e., to all documents spawned by the SRS). This

depends upon each requirement in the SRS having a unique name or reference

number.

Šaltinis: IEEE Recommended Practice for Software Requirements Specifications, IEEE Standard 830-

1998, 1998.

SRS generation can be described as a process also.

MII-DS-07T-17-10 12

Reference: [40].

Fig. 2 SRS generation process

The quality of SRS also is a repeatable process where competency questions

written in natural language are interpreted.

All of the system analyst would like to write requirements specifications

meeting these requirements. But it very depends on the experience of the system

analyst, so human factor is playing a key role while preparing a specification.

On the other hand, nobody writes them from scratch, unless it is very informal

requirements or has a little scope. But mostly of the proffesionals in this field use

templates. Or company know-how. Which could be a template also. There are many

templates created and can be found online. But to be closer to perfection, formal

templates are used, and they are only a few known in the world:

 Volere Requirements Specification Template, copyright © 1995 – 2007

the Atlantic Systems Guild Limited;

 IEEE template 830;

 IBM template;

 ISO standard.

Volere Requirements Specification Template is intended for use as a basis for

requirements specifications. The template provides sections for each of the

requirements types appropriate to today's software systems. It can be downloaded as a

pdf version from the Volere site and adapted it to requirements gathering process and

requirements tool. The Volere site also has a Word RTF version. The template can be

used with Requisite, DOORS, Caliber RM, IRqA, Magic Draw and other popular tools.

MII-DS-07T-17-10 13

IEEE template is a description of a software system to be developed. It lays out

functional and non-functional requirements, and may include a set of use cases that

describe user interactions that the software must provide (IEEE).

IBM template provides access to the detailed system requirements information

on the supported releases of IBM Business Process Manager Standard (IBM).

Templates are convenient to use, but it does not provide reasoning tools, also it

gives a structure and tips/tricks for writing requirements, but it does not provide any

information about a domain. For this reason ontologies should be used to accompany

templates for requirements specification preparing process.

ISO standard. It is not a template, but very important standard which companies

should keep while creating software. ISO/IEC/IEEE 29148:2011 contains provisions

for the processes and products related to the engineering of requirements for systems

and software products and services throughout the life cycle. It defines the construct of

a good requirement, provides attributes and characteristics of requirements, and

discusses the iterative and recursive application of requirements processes throughout

the life cycle. ISO/IEC/IEEE 29148:2011 provides additional guidance in the

application of requirements engineering and management processes for requirements-

related activities in ISO/IEC 12207 and ISO/IEC 15288. Information items applicable

to the engineering of requirements and their content are defined. The content of

ISO/IEC/IEEE 29148:2011 can be added to the existing set of requirements-related life

cycle processes defined by ISO/IEC 12207 or ISO/IEC 15288, or can be used

independently. ISO/IEC 12207:2008 (IEEE Std 12207-2008) and ISO/IEC/IEEE

15288:2015, - specifies the required information items that are to be produced through

the implementation of the requirements processes,- specifies the required contents of

the required information items, and- gives guidelines for the format of the required and

related information items (ISO).

There are several pitfalls that will inhibit the generation and management of an

optimal set of system requirements, as discussed in Table below.

Table 2. Major Pitfalls with Definition of System Requirements

Pitfall Description

Insufficient Analysis of

Stakeholder

Requirements

If the receivers of the stakeholder requirements do not perform a sufficient

critical analysis of them, the consequence could be difficulties translating

them into system requirements and the obligation to come back to the

stakeholders, losing time.

MII-DS-07T-17-10 14

Insufficient Analysis of

Operational Modes

and Scenarios

The operational modes and operational scenarios are not sufficiently

analyzed or defined by the person in charge of writing the system

requirements. Those elements allow the structuring of the system and its

use early in the engineering process and help the designer to remember

functions and interfaces.

Incomplete Set of

System Requirements

If the system requirements are not sufficiently precise and complete, there

is a great risk that the design will not have the expected level of quality

and that the verification and validation of the system will be delayed.

Lack of Verification

Method

Delaying the capture of verification methods and events for each system

requirement; identification of the verification approach for each

requirement often provides additional insight as to the correctness and

necessity of the requirement itself.

Missing traceability Incorrect or missing traceability of each requirement, both to an upper-

level "parent" requirement as well as allocation to an inappropriate system

or system element.

Reference: [77]

To overcome pitfalls and to develop a successful requirements specification,

widely known methodologies can be adjusted.

1.1.1 Ontologies in RE approach

The study of an information system requirements should result in the

establishment of well-defined functionalities and attributes agreed by the stakeholders.

If the functionalities are defined as incomplete or incorrect, the software may not meet

the expectations of users. Factors that could lead to an inadequate process of

requirements elicitation can be [37]:

o Ambiguous Requirements: which produce lost of time and repeated

work. Their origin resides in the diverse stakeholders, who produce different

interpretations of the same requirement. Moreover, one stakeholder can interpret the

same requirement in diverse ways. The ambiguity conduces to mistaken product tests.

o Insufficient Specifications: they produce the absence of key

requirements. This conduces to developers' frustration, because they base their work in

incorrect suppositions and, so, the required product is not developed, which displeases

the clients.

o Requirements not completely defined: they make impossible the project

secure planning and its monitoring. The poor requirements understanding leads to

optimistic estimations, which return against when the agreed limits are surpassed.

o Dynamic and changing requirements: which require constant

requirements revision in order to help to understand new clients needs and to identify

how they can be satisfied.

MII-DS-07T-17-10 15

In order to reduce the negative effects of the previous factors on the RE

processes, the ontologies can be used. The potential uses of ontologies in RE include

the representation of:

 The requirements model, imposing and enabling a particular

paradigmatic way of structuring requirements;

 Acquisition structures for domain knowledge;

 The knowledge of the application domain [37].

An ontology-based requirements specification tool may help to reduce

misunderstanding, missed information, and help to overcome some of the barriers that

make successful acquisition of requirements so difficult [38].

Simplified, ontologies are structured vocabularies having the possibility of

reasoning. It includes definitions of basic concepts in the domain and relations among

them. It is important that the definitions are machine-interpretable and can be processed

by algorithms.

Why would someone want to develop an ontology?

Some of the reasons are [38]:

 To share common understanding of the structure of information among

people or software agents.

 To enable reuse of domain knowledge.

 To make domain assumptions explicit.

 To separate domain knowledge from the operational knowledge.

 To analyze domain knowledge.

For an ontology being successfully used in requirements checking, it has to have

the following properties: completeness, correctness, consistency, and unambiguity.

The intuitive meaning is:

 correctness means that the knowledge in the ontology does not violate

the domain rules that correctly represent the reality;

 consistency means that there are no contradictory definitions in

ontology;

 completeness means that the knowledge in ontology describes all

aspects of the domain;

 unambiguity means that the ontology has defined a unique or

unambiguous terminology.

MII-DS-07T-17-10 16

There are not obscure definitions of ontology concepts, i.e. each entity is

denoted by only one, unique name, all names are clearly defined and have the same

meaning for the analyst and all stakeholders [38].

1.1.2 The concept of ontology

Many authors in their researches and articles may propose different ontology

meaning and definitions. It is important to keep in mind that the definition of ontology

mostly depends on the purpose why ontology is used and the task how it is used. In a

case of this research, ontology meaning will be expressed from information systems

and requirements engineering perspective.

Ontology from philosophy perspective, is the “branch of metaphysics that

concerns itself with what exists” [Blackburn, 1996 p.269]. This perspective was first

introduced in 1613. In the newer approach, it is described as the science of what is, of

the kinds and structures of objects, properties, events, processes, and relations in every

area of reality (Smith 2002). Philosophers have been studying ontology since Aristotle.

In the computer and information science, the term “ontology” occurred in a

literature already in 1967, in the work on the foundations of data modelling by S. H.

Mealy [74].

In recent year ontologies – shared conceptualizations of some domain – are

increasingly seen as the key to further automation of information processing. There are

many applications of such an approach, e.g. automated information processing,

information integration or knowledge management, to name just a few. Especially after

Tim Berners-Lee coined the vision of the Semantic Web, where Ewb pages are

annotated by ontology-based meta-data, the interest in ontology research increased, in

hope of finding ways to off-load large-volume information processing from the human

user to autonomous agents [2].

The word ontology comes from the Greek ontos (being) and logos (word). It

denotes the science of being and the descriptions for the organization, designation and

categorization of existence [33]. Carried over to computer science in the field of

artificial intelligence and information technologies, an ontology is understood as:

 a representational artifact for specifying the semantics;

 meaning about the information or knowledge in a certain domain in a

structured form [34] [37].

MII-DS-07T-17-10 17

A theoretical model of ontology is adapted from the work of Kalibatiene (2009)

and is presented in Fig. 1 [74].

A concept (by different authors also called a class) is an abstract or general idea

inferred or derived from specific instances. A concept defines a set of individuals that

belong together because they share the same properties (OWL2 2009). The most

general concept named “Thing” is a concept of all individuals and is a super concept of

all concepts [74].

Properties can be used to state relationships between individuals or from

individuals to data values (OWL2 2009). Examples of properties include is-a, partof,

subClassOf, equivalent, differentFrom, hasAge. Is-a, part of, subClassOf, equivalent,

differentFrom relationships can be used to relate one concept to another, and the last

one (has Age property) can be used to relate an instance of the concept to an instance

of the data type. A set of properties depends on the chosen ontology language [74].

According to IDEF5 (2010), axioms are defined as precise characterization of

the logic of a concept or a set of related concepts. An axiom typically expresses a

constraint on the objects denoted by the terms in axiom.

The examples of axioms are reflexivity of relations, symmetry of relations,

transitivity of relations, inverse relations, composition of relations, axioms

implemented by special language (for example, PAL), etc. More detailed information

about axioms can be found in the article of Vasilecas et al. (2009) [74].

 In other literature resources, an ontology is stated as an explicit specification of

a conceptualization [12]. It is a designed artifact that formally represents agreed

semantics of a domain interest in computer resources [12]. This enables the sharing and

reuse of information and allows for the interoperation of information systems [13].

But the most acceptable ontology definition is proposed in the specification

prepared by OMG (2009) [74]:

An ontology defines common terms and concepts (meaning) used to describe

and represent an area of knowledge. An ontology can range in expressivity from a

taxonomy (knowledge with minimal hierarchy or a parent/child structure), to a

thesaurus (words and synonyms), to a conceptual model (with more complex

knowledge), to a logical theory (with very rich, complex, consistent, and meaningful

knowledge).

MII-DS-07T-17-10 18

The structure of ontology can be defined mathematically. However, different

authors provide different definitions. Ontology O is mostly defined as a triplet:

O = (C, P, A) ,

where C is a nonempty set of concepts, P is a set of properties and A is a set of

axioms [74].

Although not a new field, ontology research has recently received renewed

interest and attracted many other fields such as the semantic web, databases, electronic

commerce, knowledge management, electronic learning, information retrieval, digital

library, bioinformatics, geographical information systems, software engineering,

intelligent systems and natural language processing. Thus, we can classify the ontology

applications as reported in Pisanelli et al. [14], Fensel [15], Mizoguchi [1] and the most

comprehensive survey by Hart et al. [16].

 Mizoguchi [1] defines five typical types of ontology application including:

a) ontology as a common vocabulary;

b) ontology as assisting of information access;

c) ontology as the medium for mutual understanding;

d) ontology as specification;

e) ontology as foundation of knowledge systematization.

Van Heijst et al. (1996) classify ontologies according to their use [74]:

• Terminological ontologies, which specify what terms are used to represent the

knowledge;

• Information ontologies, which specify storage structure data;

• Knowledge modelling ontologies, which specify the conceptualization of

knowledge.

Fensel (2004) classifies ontologies:

• Domain ontologies, which capture the knowledge valid for a particular

domain;

• Metadata ontologies, which provide a vocabulary for describing the content of

online information sources;

• Generic or common sense ontologies, which capture general knowledge about

the world providing basic notions and concepts for things like time, space, state, event,

etc;

MII-DS-07T-17-10 19

• Representational ontologies that define the basic concepts for the

representation of knowledge;

• Method and particular tasks ontologies, which provide terms specific for

particular tasks and methods. They provide a reasoning point of view on domain

knowledge.

Ontologies, for software design and development, can be used with the

following objectives [29] [26]:

• Specification: ontologies are used to specify either the requirements and

components definitions (informal use) or the system´s functionality.

• Confidence: ontologies are used to check the system´s design.

• Reusability: ontologies could be organized in modules to define domains,

subdomains and their related tasks, which could be later reused and/or adapted to other

problems.

• Search: ontologies are used as information repositories.

• Reliability: ontologies could be used in (semi)–automatic consistency

checking.

• Maintenance: ontologies improve documentation use and storage for system’s

maintenance.

• Knowledge acquisition: ontologies could be used as a guide for the knowledge

acquisition process. Within Software Engineering, two main roles for ontologies have

been considered [30]:

• Ontologies for the Software Engineering Process: the definition, re–use and

integration of software components is aided by the use of ontologies as the conceptual

basis.

• Ontologies for the Software Engineering Domain: the use of ontologies to

describe the structure and terminology of the software engineering domain itself.

Ontologies can be classified according to the task they are meant to fulfill [42]:

 Knowledge representation ontologies describe the modeling primitives

applicable for knowledge formalization;

 Top-level ontologies, also called upper-level ontologies, try to

comprehensively capture knowledge about the world in general, describing for

example: space, time, object, event or action, and so forth, independently of a particular

domain;

MII-DS-07T-17-10 20

 Domain ontologies and task ontologies contain reusable vocabularies

with their relations describing a specific domain or activity. They can specialize the

terms of top-level ontologies.

Ontologies, which are formal, explicit specifications of shared

conceptualisations, encourage collaborative development by different experts.

Ontologies capture knowledge at the conceptual level, thus enabling ID experts to

directly manipulate them without the involvement of a knowledge engineer. In its

simplest form, an ontology is a taxonomy of terms (i.e. a “shared lexicon”) whereas

more expressive approaches such as the Ontology Web Language OWL (W3C – OWL,

2003) encode knowledge in logical axioms. Ontologies support knowledge reuse by

allowing more specific concepts to inherit the properties of those concepts they

specialise. This also allows the representation of knowledge at different abstraction

levels. In this way, instructional theories at a high level of abstraction can be related to

concrete teaching methods [4].

Ontology–driven software development or engineering has been defined as an

approach that, based on ontologies, takes into account semantic constraints, adapting in

a dynamic way to new constraints [28]. It could be considered a particular case of

model–driven software, where models are based on ontologies at different levels of

abstraction [26].

Based on these considerations, in (Guarino, 1998), the author proposes a

classification of ontology kinds based on their level of dependence on a particular task

or point of view (Guizzardi thesis):

Top-level ontologies describe very general concepts like space, time, matter,

object, event, action, etc., which are independent of a particular problem or domain;

Domain ontologies and task ontologies describe, respectively, the vocabulary

related to a generic domain (like medicine, or automobiles) or a generic task or activity

(like diagnosing or selling), by specializing the terms introduced in a top-level

ontology;

Application ontologies describe concepts that depend both on a particular

domain and task, and often combine specializations of both the corresponding domain

and task ontologies. These concepts often correspond to roles played by domain entities

while performing a certain task, like replaceable unit or spare component.

MII-DS-07T-17-10 21

Reference: [75]

Fig. 3 Ontology types

Ontology may be classified as follows, based on the scope of the ontology (see

also figure 3):

Upper/Top-level Ontology: it describes general knowledge (i.e. what time is and

what space is) [75]:

 Domain Ontology: it describes the domain (medical domain, personal

computer domain or electrical engineering domain).

 Task Ontology: it is suitable for a specific task (assembling parts

together).

 Application Ontology: it is developed for a specific application

(assembling personal computers).

Modularization can be used at each level. For instance, upper ontology could

includes modules for Real Numbers, Time and Space (parts of Upper Ontology,

generally are called generic Ontologies).Upper levels Ontologies could be imported by

Ontologies at lower levels and adding them specific knowledge. Domain and Task

Ontologies may be independent and are combined to be used for application ontology

[75].

Benefits and problems of using ontologies in software engineering

Ontologies provide benefits regarding the process of software development,

which could be summarized as follows, [31] [29] [26]:

• Ontologies provide a representation vocabulary specialized for the software

process, eliminating conceptual and terminological mismatches.

• The use of ontologies and alignment techniques allow to solve compatibility

problems without having to change existing models.

MII-DS-07T-17-10 22

• Ontologies might help to develop benchmarks of software process by

collecting data on the Internet and the use of the Semantic Web.

• Ontologies allow both to transfer knowledge and to simplify the development

cycle from project to project.

• Ontologies promote common understanding among software developers, as

well as being used as domain models.

• Ontologies allow for an easier knowledge acquisition process, by sharing a

same conceptualization for different software applications.

• Ontologies allow to reduce terminological and conceptual mismatches, by

forcing to share understanding and communications among different users during the

ontological analysis.

• Ontologies also provide for a refined communication between tools forming

part of an environment.

• Ontologies, when as machine–understandable representations, help in the

development of tools for software engineering activities.

Although ontologies are considered a useful element within software

engineering activities, some issues should still be born in mind when developing

ontology–based software development projects [30] [26]:

• The ontology–based approach is adequate for those software development

projects that belong to a set of projects within the same domain.

• The ontology–based approach allow to extend the notion of reusability to the

modeling phase, not only the usual implementation one. Therefore, ontologies could be

considered reusable model components in the system.

• Model–Driven Developments can benefit from the use of ontologies as model

re–use mechanisms.

• The ontology–based approach affects all the software development process

phases, from requirement analysis and domain analysis to integration, deployment and

use of the developed software.

• The ontology–based approach allow ontologies to be used to facilitate software

development in the long term, as well as addressing interoperability and re–use issues.

Furthermore, ontologies should exhibit some specific properties to facilitate

their use within the software engineering community:

MII-DS-07T-17-10 23

• Completeness: to assure that all areas of software development are covered. It

could be achieved by paying attention to the different activities carried out by software

development enterprises.

• Unambiguity: to avoid misinterpretations. Ambiguity could be avoided by

using both concise definitions of concepts and semi–formal models.

• Intuitive: to specify concepts familiar to users’ domain.

• Genericity: to allow the ontology to be used in different contexts. It could be

done by keeping the ontology as small as possible, to achieve maximum expressiveness

while being minimal.

• Extendability: to facilitate the addition of new concepts. It could be achieved

by providing appropriate mechanisms defining how to extend the ontology.

The relevant problems identified by Mizoguchi and Bourdeau (2000) include

[1]:

1. The “conceptual gap” between authoring systems and authors. In Artificial

intelligence, the “knowledge level” is explicitly distinguished from the “symbol level”

in which knowledge is encoded (Newell, 1982). The traditional approach to the

development of rule-based systems involves a knowledge engineer, who encodes the

knowledge elicited from a domain expert. Unfortunately, this results in a gap between

the conceptualisation of the ID expert and the corresponding computer representation.

Consequently, (i) the development, (ii) the verification & validation, and (iii) the

maintenance of rule bases can become rather difficult.

2. The lack of theory awareness of systems. Heuristic rules cannot explicitly

represent the theories they commit to.

3. The difficulty to integrate the latest research results. The lack of theory

awareness prevents the adaptation of rule bases in order to accommodate subsequent

results of ID research [4].

Summary

Well established requirements engineering process is one of the key factors for

successful software development result. The result of the requirements engineering

process is a requirements specification document. System requirements specification to

be stated as “good”, has to meet several formal criteria according to IEEE. And to meet

MII-DS-07T-17-10 24

this criteria, overcome requirements engineering pitfals, widely known methodologies

can be adjusted. In our case ontology will be established in the process to overcome the

problems in requirements engineering.

Ontology is a field that can be found in philosophy, also in computer science,

which is mostly interest for this research.

A lot of authors introduce definition of ontology and there is no common,

general one exact description, but mostly agreed that it is shared conceptualizations of

some domain. It is the field of artificial intelligence and information technologies, and

it is understood as:

• a representational artifact for specifying the semantics;

• meaning about the information or knowledge in a certain domain in a

structured form.

Ontologies have different purpose to be created, but mostly it is recognized as

a knowledge base and a tool to formalize natural language to reuse it in computer

technologies.

It can have different purposes, but also can have different layers of formality,

such as top-level, domain and application ontology.

1.2 A comparative study on ontology languages and tools

To analyse ontology use in designing requirements specifications

comprehensively, a comparative study on latest methodologies, languages and tools

was held and described in this chapter.

1.2.1 Languages

For ontology representation in a machine-interpretable way, different languages

exist. Ontology languages are usually declarative languages commonly based on either

first-order logic or on description logic. Ontology languages based on first-order logic

have high expressive power, but computational properties such as decidability are not

always achieved due to the complexity of reasoning [35]. The most popular language

based on description logic is OWL DL, which have attractive and well-understood

computational properties [36]. Another relevant language in Ontological Engineering

is the Resource Description Framework (RDF). RDF was originally meant to represent

metadata about web resources, but it can also be used to link information stored in any

information source with semantics defined in an ontology.

MII-DS-07T-17-10 25

Many ontology languages have been developed, each aimed at solving

particular aspects of conceptual modeling. Some of the, such as RDF(S) are simple

languages offering elementary support for ontology modeling for the Semantic Web.

There are other, more complex languages with roots in formal logic, focused around

inference – ways to automatically infer facts not explicitly present in the model. Let’s

overview several languages created by W3 consortium:

• KIF: short for Knowledge Interchange Format, is a language based on first

order logic created in 1992 as an interchange format for diverse knowledge related

systems [75].

• RDF: stands for Resource Description Framework, was developed by the W3C

to describe Web resources and allows the specification of the semantics of data based

on XML in a Homogeneous, Interoperable Manner. It also provides mechanisms to

clearly represent Services, Processes and Business Models, while allowing recognition

of information not clear [75].

• RDFS: stands for RDF Schema and was built by the W3C as an extension to

RDF with Frame-Based Primitives. RDF(S) is obtained by the combination of both

RDF and RDF Schema. RDF(S) just allows the representation of Concepts,Taxonomies

of Concepts and Binary Relations for that reason it is not very expressive. Three

additional languages have been developed as extensions to RDF(S) and described in

the following section (OIL, DAML OIL and OWL) [75].

• DAML+OIL: Stands for DARPA Agent Markup Language+. DAML+OIL,

has been developed by a joint committee from the US and the European Union (IST) in

the context of DAML, a DARPA project for allowing semantic interoperability in

XML. Therefore, the same objectives as OIL are shared by DAML+OIL, it is built on

RDF(S). DAML+OIL language was based on OIL as indicated by its name. The OIL

and DAML+OIL languages allow Concepts, Taxonomies, Functions, Binary Relations

and Instances representation. The tools that can author DAML+OIL Ontologies are

OILEd, OntoEdit, Protégé2000 and WebODE [75].

• OWL: stands for Web Ontology Language, created in 2001 by a working

group formed by W3C. The formed group has defined a list of main use cases for the

Semantic Web, taking into account the DAML+OIL features as the main input for

developing OWL and proposing the first specification of this language. Currently OWL

MII-DS-07T-17-10 26

may be distinguished between OWL1 and OWL2, OWL1 includes three classes:OWL

Full, OWL DL and OWL Lite [75].

• CycL: CycL was developed by Cycorp and it is a formal language whose

syntax is a derivative from first-order predicate calculus and that extends first-order

logic based on the second order concepts. CycL is adopted to express common sense

knowledge and to represent the knowledge stored in the Knowledge Base Cyc. The

CycL vocabulary includes terms: Semantic Constants, Integer, Strings, Non-Atomic

Terms, Variables, etc. A knowledge base can be formed by a set of sentences. In brief,

CycL uses predicate logic extended by typing, reification and microtheories that define

a context for the truth of formulas [75].

To analyse ontology languages, formal criteria were presented by several

authors [72], [73], [74] in their researches. These criteria are applicable to the research:

 Specification perspective – different languages may focus on different

perspectives, and may provide constructs for only some perspectives. Authors of [72]

define seven specification perspectives: a structural (a static structure); a functional

(processes, activities and transformations); behavioural (states and transitions between

them); a rule (rules for certain processes, activities, entities); an object (objects,

processes and classes); a communication (language actions, meaning and agreement);

and actor and role (actors, roles, societies, organizations). A structural perspective is

the most important in ontologies.

 Expressiveness – possibility to express semantics (domain knowledge).

I.e. according to the content of a domain knowledge, which can be expressed by a

language, it can be lightweight, light heavyweight, and heavyweight. Another important

aspect is lexical support – a capability for lexical referencing of elements (e.g.,

synonyms).

 Inference engine – possibility to inference new knowledge from the

existing, i.e. possibility of reasoning.

 Constraint checking – existence of a constraint checking mechanism.

 Mapping with other languages. Nowadays, the feature of a language to

map with other language is significant, because of reusability of knowledge and

interoperability.

 Standard – describes if the language accepted as a standard.

 Tools – describes if a language implemented into a particular tool or not.

MII-DS-07T-17-10 27

 Formal syntax and semantics - a formal language is made of three

components: the syntax (e.g. rules for determining the grammatical well-formed

sentences), the semantics (e.g. rules for interpreting sentences in a precise, meaningful

way within the domain considered), and the pragmatic (e.g. rules for explaining how to

use the language and for inferring useful information from the specification).

Otherwise, a language is informal.

 Popularity – we add this criterion to determine the popularity of a

language. We determine it according to the number of links in Google Scholar [73].

As can be seen, ten criteria are selected to compare ontology languages.

However, it is important to note that some of those criteria are dependent from other

but interdependence of criteria is not in the scope of this analysis.

The selection of applicable ontology languages was based on a brief literature

study, choosing the criteria that best suits this research purposes.

In the table below, a comparative study on several ontology languages are

presented. Languages were compared according to selected criteria, by their formality,

available tools for developing ontology, expressiveness, specification perspective,

inference engine availability, constraint checking opportunities, formal syntax and

semantics, standard criteria for a language and popularity, which shows how often

languages are used in the researches according to Google scholar. And also the novelty

of the language, it should be not very old, as it is still supported and widely used these

days, in a very changing technological environment. As mentioned abowe, it was

chosen to compare OWL, RDF, CycL, DAML+OIL and KIF languages.

Table 3. Comparative study on ontology languages

 Languages

Criteria

OWL RDF CycL DAML+OIL KIF

Standard Yes Yes No No Yes

Tools Many Many Few Few Few

Expressiveness High Medium High Medium High

Specification

perspective

Structural Structural Structural Structural Structural

Inference engine Yes No Weak Possible Yes

Constraint

checking

Good Weak Good Weak Weak

Mapping RDF OWL,

DAML+OIL

OIL RDF No

MII-DS-07T-17-10 28

Formal syntax Yes Yes Yes Yes Yes

Formal

semantics

Yes Yes Yes Yes Yes

Popularity 217 000 228 000 9 290 13 700 16 300

State of the art Yes Yes Yes Yes No

According to the study it was chosen to work with OWL, as it satisfies our

criteria, is a standard, has tools, has a high expressive power, which is important for

designing requirements, also it has structural specification perspective, as it is important

to structure requirements and have reuse factor. It has mapping with RDF which will

be additional language for the experiment, as they both are very related in some cases,

such as data expression. It has formal syntax and semantics, it is quite popular and still

supported as it is new age language. It also has DAML+OIL features, is like an

improved version of the mentioned languages. And the last but very important criteria

is that, it is created by W3 and is continuously improving also by OMG.

OWL

The W3C Web Ontology Language (OWL) is a Semantic Web language

designed to represent rich and complex knowledge about things, groups of things, and

relations between things. OWL is a computational logic-based language such that

knowledge expressed in OWL can be exploited by computer programs, e.g., to verify

the consistency of that knowledge or to make implicit knowledge explicit. OWL

documents, known as ontologies, can be published in the World Wide Web and may

refer to or be referred from other OWL ontologies. OWL is part of the W3C’s Semantic

Web technology stack, which includes RDF, RDFS, SPARQL, etc.

(https://www.w3.org/OWL/).

OWL 2 is not a programming language: OWL 2 is declarative, i.e. it describes

a state of affairs in a logical way. Appropriate tools (so-called reasoners) can then be

used to infer further information about that state of affairs. How these inferences are

realized algorithmically is not part of the OWL document but depends on the specific

implementations. Still, the correct answer to any such question is predetermined by the

formal semantics (which comes in two versions: the Direct Semantics [OWL 2 Direct

Semantics] and the RDF-Based Semantics [OWL 2 RDF-Based Semantics]).

Also, it is important to note, that OWL is referring to RDF. OWL graph is an

RDF graph (OWL 2 2009). Not all RDF graphs are valid OWL graphs, however. The

OWLGraph class specifies the subset of RDF graphs that are valid OWL graphs [74].

https://www.w3.org/OWL/

MII-DS-07T-17-10 29

Reference: W3.org

Fig. 4 OWL ontology

As shown in Figure above, an OWL ontology consists of a collection of facts,

axioms, and annotations, defined in terms of RDF graphs and statements. The

ontologyID (in the form of the URI reference it has by virtue of being a resource) allows

us to make statements about a particular ontology – including annotations such as the

relationship between a particular ontology and other ontologies, version information,

and so forth (https://www.w3.org/TR/owl2-syntax/).

OWL 2 is a knowledge representation language, designed to formulate,

exchange and reason with knowledge about a domain of interest. Some fundamental

notions should first be explained to understand how knowledge is represented in OWL

2. These basic notions are:

 Axioms: the basic statements that an OWL ontology expresses;

 Entities: elements used to refer to real-world objects;

 Expressions: combinations of entities to form complex descriptions from

basic ones.

While OWL 2 aims to capture knowledge, the kind of “knowledge” that can be

represented by OWL does of course not reflect all aspects of human knowledge. OWL

can be considered as a powerful general-purpose modeling language for certain parts

of human knowledge. The results of the modeling processes are called ontologies – a

terminology that also helps to avoid confusion since the term “model” is often used in

a rather different sense in knowledge representation.

https://www.w3.org/TR/owl2-syntax/

MII-DS-07T-17-10 30

There are OWL tools – reasoners – that can automatically compute

consequences. The way ontological axioms interact can be very subtle and difficult for

people to understand. This is both a strength and a weakness of OWL 2. It is a strength

because OWL 2 tools can discover information that a person would not have spotted.

This allows knowledge engineers to model more directly and the system to provide

useful feedback and critique of the modeling. It is a weakness because it is

comparatively difficult for humans to immediately foresee the actual effect of various

constructs in various combinations. Tool support ameliorates the situation but

successful knowledge engineering often still requires some amount of training and

experience (https://www.w3.org/TR/2012/REC-owl2-primer-

20121211/#OWL_Syntaxes).

OWL provides three increasingly expressive sublanguages designed for use by

specific communities of users and implementors:

• OWL Lite - which supports users primarily needing a classification hierarchy

and simple constraints.

• OWL DL - which supports users who want maximum expressiveness without

losing computational completeness and decidability of reasoning systems.

• OWL Full - which is intended for users who want maximum expressiveness

and the syntactic freedom of RDF without computational guarantees.

1.1.3 Tools

To successfully develop an ontology, the tool is a must. In this chapter, several

ontology tools will be represented and the most relevant to the research will be

proposed, according to comparable study.

• OntoEdit: OntoEdit is an ontology editor integrating various aspects of

ontology engineering. OntoEdit is quite exceptional in its category since it is based on

a modern method for ontology development and because it makes comprehensive use

of inferencing [75].

• Protégé: Protégé is an ontology editor created at Stanford University and is

very popular in the field of Semantic Web and the level of computer science research.

Protégé is free, developed in Java and its source code is released under a free license

(the Mozilla Public License). Protégé can read and save ontologies in most ontologies

https://www.w3.org/TR/2012/REC-owl2-primer-20121211/#OWL_Syntaxes
https://www.w3.org/TR/2012/REC-owl2-primer-20121211/#OWL_Syntaxes

MII-DS-07T-17-10 31

formats: RDF, RDFS, OWL, etc. It has several competitors such as Hozo11, OntoEdit

and Swoop. It is recognized for its ability to work on large Ontologies [75].

• OILEd: OIL Editor (OilEd) is a simple ontology editor that supports OIL-

based Ontologies construction. The basic design has been deeply influenced by similar

tools such as Protégé5 and OntoEdit, but OilEd extended these approaches in several

manners, especially using an extension of expressive power and a reasoner. OilEd

supports the construction of OILbased Ontologies as an ontology editor [75].

• Ontolingua: The Ontolingua is an ontology tool created the Knowledge

System Laboratory at Stanford University. Ontolingua is devoted for Ontologies

development using a form-based Web interface. The ontology editor of Ontolingua is a

tool supporting distributed, browsing,collaborative editing and Ontologies

creation.Using Ontolingua, it is possible to export or import the following formats: KIF,

DAML+OIL, OKBC, Prolog, LOOM, Ontolingua and CLIPS (C Language Integrated

Production System). Additionally, it is also possible to only import Classic Ocelot and

Protégé format, but not their export [75].

• WebODE: WebODE,can be defined as described in the Ontological

Engineering Group webpage, “WebODE was built as a Scalable, Extensible, Integrated

workbench that covers and gave support to most of the activities involved in the

ontology development process (conceptualization, reasoning, exchange, etc.) and

supplied a comprehensive set of ontology related services that permit interoperation

with other information systems”. WebODE exports to WebODE’s XML, RDF(S),

Prolog, OIL, Java/Jess, DAML+OIL, X-CARIN, UML and OWL, and imports from

WebODE’s XML, RDF(S), UML, X-CARIN and OWL [75].

• WebOnto: WebOnto is a tool which provides a web-based visualization,

browsing and editing support to develop and maintain Ontologies and knowledge

models specified in OCML. An ontology can be viewed as a model of the conceptual

structure of some domain and WebOnto provides the capability to represent this

graphically [75].

• OWLGrEd: short for OWL Graphical Editor is a free UML style graphical

editor for OWL Ontologies. It has further features for the exploration and development

MII-DS-07T-17-10 32

of graphical ontology. OWLGrEd provides a complete graphical notation for OWL2,

based on UML class diagrams and take into account the interoperability with Protégé

[75].

• Graffoo: Graffoo stands for Graphical Framework for OWL Ontologies, is a

superb new open source tool developed by Silvio Peroni that can be used to present the

classes, properties and restrictions within OWL ontologies, or sub-sections of them, as

clear and easy-to-understand diagrams. Several Graffoo diagrams have been developed

to explain SPAR ontologies, or portions of them, and are to be found in the appropriate

ontology directories [75].

To compare these described tools, several criteria was chosen, based on the

study in [75]. First of all an important aspect is release date, because it shows how new

and modern the tool is. The older it is, the more likely it won’t be supported anymore.

Second aspect is base language, on which language the tool is developed. If we choose

one language, but the tool is based on another, it will be difficult to develop an ontology,

it could come up to some problems like mapping. Also to what languages the tool can

import and export data. It is also related to the base language and the tool facility.

Availability is also an important aspect, because we do not want to experiment on niche

tools, we would like to have a community for support and less likely it to be licenced

as it would blow up the budget of the research. And the last ones, but not less important

are ontology storage and ontology library aspects, as we would like the tool to be

specifically developed for creating ontologies, to be specialized to work on ontology

development problems, and the data we will later use on the further experiments, like

files, code, etc. And it should have an ontology library already stored, as we would like

to experiment with it for knowledge structure and reuse parts.

Table 4. Comparative study on ontology tools

Tool Release

date

Base

language

Export/import to

languages

Ontology

storage

Availability Ontology

library

OILEd 31/10/2003 DAML+OIL RDF URI’s; limited

XML Schema,

export: HTML.

Files Open

source

Yes

OntoEdit 04/03/2004 F-Logic RDFS, F-Logic,

DAML+OIL;

RDB, schemas

Files Open

source

No

Protégé2000 22/06/2004 OKBC+

CLOS

RDF, RDFS,

DAML+OIL; XML,

OWL, Clips; UML

Files

&DBMs

(JDBC)

Open

source

Yes

MII-DS-07T-17-10 33

based

metamodel

WebODE 03/2002 HTML

forms

and Java

applets

Imp/exp: XML,

RDF(S),

XCARIN, OWL

Exp: OIL DAML +

OIL FLogic,

Prolog Jess, Java

DBMS

(JDBC)

Open

source

No

WebOnto 05/2001 OCML Imp/exp: OCML

Exp: Ontolingua

GXL, RDF(S),

OIL

Files Open

source

Yes

Ontolingua 11/2001 Ontolingua Imp/Exp: KIF,

OKBC,Loom,Prolog,

Ontolingua, CLIPS

import only: Ocelot,

classic,

Protégé

Files Open

source

Yes

OWLGrEd 10/ 2011 OWL OWL, OWL2, UML,

RDF/XML

Files Open

source

Yes

Grafoo 28/10/2013 OWL OWL2, Turtle,

RDF/XML,

Manchester

Syntax, or

OWL/XML

Files Open

source

No

The best suitable tool for the research would be OWLGrEd, as it is released 6

years ago, is supported till these days and continuously improving. It is based on OWL

language, which we chose in previous comparative study to work with. It perfectly

exports and imports to languages as UML, RDF, XML, which as also very important

to the research, as it will be used in research experiment. It has files storage, as it is very

convenient for requirements specification development. It has ontology library, which

is suitable for reuse existing knowledge and it is free to use. Also it as interperobility

with Protégé, which will be used for ontology rules description.

Summary

To select the most suitable language and tool for the research case study, many

articles analysis was held. And several criteria were selected, accorging to several

authors. Different ontology languages and different tools serve different purpose and

face different challenges.

The most relevant language for the research was chosen OWL 2, as it is a

standard, it is an upgraded version of DAML+OIL, also it is quite modern and popular,

it has formal syntax and semantics, well structured specification, has high expressive

power, constraint checking availability. Also it is closely related and can be easily

MII-DS-07T-17-10 34

mapped with RDF and XML, so that means it is provides broader range of

opportunities.

With a tools, it was also important for tool to be modern, well supported till

these days, to be based on OWL, as it will be used in the futher research. Should have

import/export opportunities to RDF and UML. Should have file storage for

specifications generation, should have a library of ontologies for existing knowledge

reuse and also it is convenient that it is an open source tool, which means it is easily

accessible and has community. At this point OWLGrED was chosen. Also it is

important to note, that this tool has very expressive power for providing diagrams and

quite convevient graphical interface. Also it as interperobility with Protégé, which will

be used for ontology rules description.

1.3 The concept of domain metamodel

Requirements Engineering calls for an explicit domain knowledge. This domain

knowledge generally resides in different areas, such as experiences, functionality, non-

functional requirements, stakeholders and so on. Thus, it is necessary to concentrate

this knowledge for the most appropriate application. Knowledge-driven techniques

seem promising for this purpose. Kossmann et. al. in [66] define Knowledge-driven

Requirements Engineering when Requirements Engineering is guided not only by a

process but as well by knowledge about the process and the problem domain. In order

to use knowledge-driven techniques, it is necessary to apply knowledge repositories

that can be easily updated and utilised [39].

Furthermore, inferencing and decision support must be applicable on such a

repository. Ontologies are one possible way for representing, organising and reasoning

about the complex knowledge that requirements documents embody and have been

proposed to be used in different ways for RE [39].

The benefits of the ontologies we already discussed in previous chapters. Now

we will overview traditional architectures to integrate in the research.

1.3.1 Model Driven Architecture (MDA) to Ontologies

Model-driven Architecture (MDA) provides a framework for software

development focusing on models in all phases of development [19]. Models are more

than abstract descriptions of systems, as they are used for model- and code generation

– they are the key part of the definition of a software system. Since in MDA abstract

MII-DS-07T-17-10 35

models are refined to more concrete models, (automated) model transformations are

very important [21]. For MDA methodologies we can distinguish two kinds of model

transformations. In vertical model transformations models from higher level of

abstraction are transformed to models of lower level of abstraction, e.g. platform

independent models to platform specific models. There, knowledge of platforms is

encoded into transformations, reused for many systems rather than redesigned for each

new system. Horizontal model transformations are used for describing mappings

between models of the same level of abstraction. By relating concepts of various model

types, knowledge of modelling domains is encoded into transformations, enabling the

integrated use of different models without having to specify interrelationships between

each set models manually.

In MDA a model is a representation of a part of the functionality, structure and

behaviour of a system. A specification is said to be formal when it is based on a

language with well-defined structure (‘syntax’) and meaning (‘semantics’). Thus MDA

models must be paired unambiguously with a definition of the modeling language

syntax and semantics [22]. Most metamodels have, despite of well-defined syntax,

descriptions of their semantic concepts and dynamic semantics, which is neither formal

nor machine understandable. Taking the idea of the semantic web [23], where the word

semantic means machine understandable to modeling, metamodels have to be grounded

using ontology meta data. This enables machines to understand the meaning of

metamodels’ concepts. In our approach we lift the syntactical (meta-)model description

by semantic enrichment into ontologies describing the concepts of the model in a

machine understandable form. Model transformations are defined on top of those

ontologies [24].

By enriching model-driven development with ontologies a mutual

understanding for conceptual integration can be achieved [25] [24].

Ontologies and MDA are two technologies being developed in parallel, but by

different communities [5]. They have common points and issues and can be brought

closer together [8] [5] [7]. Therefore, to bring software engineering practitioners and

ontologies closer, many researchers suggest the use of Unified Modeling Languages

(UML) in ontology development (e.g., [9] [10] [8] [7]). The main question they want

to answer is how to use UML as well-accepted modeling languages for developing and

using ontologies in real world applications. Although the ontology concepts are

MII-DS-07T-17-10 36

coincidently similar to object-oriented paradigms, it has some limitations mainly

regarding the concept of property. Because of these discrepancies, initially, we could

only use UML in the beginning of ontology development. However, there is a

significant movement in this research to overcome these limitations using UML

extensions (i.e. UML profiles) as implemented in [8] [7]. As a result, the Object

Management Group (OMG) has established Ontology Definition Metamodel (ODM)

as a MDA standard metamodel for modeling ontology [8]. The ODM defines concrete

abstract syntaxes (i.e. OWLDataTypeProperty, OWLClass) for modeling ontology that

can be represented by using UML profiles [8]. The ODM is centrally based on UML

and the W3C Web Ontology Language (OWL) recommendation [11]. In terms of

ontology modeling, on one hand, the UML provides powerful graphical modeling

capabilities and widely supported tools (i.e. Rational Rose, Poseidon, Magic Draw,

ArgoUML, etc). In addition, since the UML and ODM are MOF-compliant languages,

it is possible to store ontologies in MOF-based repositories, to store ontologies

diagrams in a standard way (UML2 XMI), as well as to share and interchange

ontologies using XMI [8] [7]. However, on the other hand, we note that not all OWL

features could be represented by UML. We will use ODM and UML profiles defined

in [8] for representing ontologies and designing the server. In addition, UML is

currently a de facto standard modeling language. There is a growing interest in its

adoption as a language for conceptual modeling and ontological representation (e.g.,

[9] [10] [8][7]).

The benefits of MDA are significant-to business leaders and developers alike

(OMG 2009):

 Reduced cost throughout the application life-cycle;

 Reduced development time for new applications;

 Improved application quality;

 Increased return on technology investments;

 Rapid inclusion of emerging technology benefits into their existing

systems.

MDA provides a solid framework that frees system infrastructures to evolve in

response to a never-ending parade of platforms, while preserving and leveraging

existing technology investments. It enables system integration strategies that are better,

faster and cheaper (OMG 2009).

MII-DS-07T-17-10 37

1.3.2 Ontology Development Metamodel (ODM)

A trigger for the call for development of an ODM was the development by the

World-Wide Web Consortium of the Web Ontology Language OWL. OWL has a

number of features which emphasize weaknesses in UML for ontology development,

including:

- The ability to fully specify individuals apart from classes, and for

individuals to have properties independently of any class they might be an instance of.

- The OWL property is much more flexible than the UML association. In

particular it can be used to model complex mereotopological relationships and hence

complex objects. (Mereotopological relationships are whole-part relationships,

including those involving spatial parts and their geometric and topological

relationships.)

- OWL Full allows classes to have instances which are themselves classes.

(šaltinis: OMG ODM)

Furthermore, organizations developing ontologies will often build on legacy

data models represented in UML or one of the dialects of Entity– Relationship (ER)

Modeling, even if the development is carried on in one of the newer metamodels.

Since there are so many metamodels which a developer might need to take into

account in an ontology project, the ODM Group decided that it would not be sufficient

to develop a metamodel for OWL only, but instead to develop a suite of MOF

metamodels, for RDFS/OWL, Topic Maps and CL. UML of course already has a MOF

metamodel.

MII-DS-07T-17-10 38

Fig. 5 Ontology in the context of MDA

The different metamodels express a concept quite differently. To show this

difference, we will use a simple running example, illustrated in Fig. 8.2 as a UML

model, of a simple model which might be a fragment of a university teaching ontology,

namely that students enroll in courses (šaltinis: OMG ODM).

Fig. 6 Fragment of a university teaching ontology, expressed in UML

One of the advantages of UML, and hence the MOF, is that there is a well-

established relationship between UML Class Diagrams and database schemas,

implemented by many more or less automatic tools. This relationship allows a first cut

at a repository for any of the metamodels in the ODM.

1.3.3 Enterprise metamodel

OMG provides Model Driven Architecture (MDA) approach to information

systems engineering where MDA focuses on functional requirements and system

architecture not on technical details only. Model Driven Architecture allows long-term

flexibility of implementation, integration, maintenance, testing and simulation. It means

that enterprise modeling and user requirements engineering stages of information

system engineering life cycle are not covered enough by MDA yet. There is lack of

formalized problem domain knowledge management and user requirements acquisition

techniques for composition and verification of MDA models. In order to solve this

problem enhancement of MDA approach by the best practices of Knowledge Base IS

engineering (including Enterprise Knowledge repository) can be used. The proposed

enhancement will intellectualize MDA models composition process by improving their

consistency and decreasing the influence of the empirical information in composition

process. Knowledge Base Subsystem ensures MDA models verification against formal

criteria defined by Control Theory. It is believed to reduce risk of project failures caused

by inconsistent user requirements and insufficient problem domain knowledge

verification.

MII-DS-07T-17-10 39

The researchers and scientists of Vilnius University developed a framework of

Knowledge-based Enterprise model, which helps to generate models, that could be used

for requirements specification. Knowledge-based CASE systems holding substantial

components, which organize knowledge: knowledge-based subsystem’s knowledge

base, which essential elements are enterprise meta–model specification and Enterprise

Model for certain problem domain. Enterprise Model as organization’s knowledge

repository enables generate UML models with the help of transformation algorithms.

Enterprise meta-model holds essential elements of business modelling methodologies

and techniques, which ensures a proper UML models generation process. In order to

decrease the influence of empirical factors on IS development process, the decision was

made to use knowledge-based IS engineering approach. The main advantage of this

approach is the possibility to validate specified data stored in EM against formal

criteria, in that way decreasing the possible issues and ensuring more effective IS

development process compared to classical IS development methods. It could be stated

that this metamodel is part of MDA approach, this is why it is relevant to this research

and it will be used in our framework.

Fig. 7 Basic elements of Enterprise Meta-model

Knowledge Based Subsystem, which improves traditional MDA conception

with best practices of problem domain knowledge and user requirements acquisition

methods, is presented in Fig above. It ensures the problem domain knowledge

verification against EMM internal structure. Such usage of Knowledge Based

MII-DS-07T-17-10 40

Subsystem together with MDA improves the consistency of software artifacts and

reduces IT projects dependency on empirical processes.

The EMM is intended to be formal structure and set of business rules aimed to

integrate the domain knowledge for the IS engineering needs. It is used as the

“normalized” knowledge architecture to control the process of construction of an EM.

Fig. 8 UML models generation by using the transformation algorithm

EMM mostly focuses on consistency of UML models generation. Also it is used

as knowledge repository, where domain knowledge is stored. It’s structure can be easily

adapted to any domain, which means it is easily reusable. That is a huge advantage for

the research. But even though, it has advantages, it has some drawbacks in a scope of

requirements engineering too:

 It does not provide semantic concept of the requirements;

 It does not provide rules and logic for associations above requirements;

 It does not provide a shared common understanding of the structure of

information among people or software agents;

 It does not provide rules for completeness, unambiguity and traceability

criteria.

For the problems mentioned above solving, EMM and ontology integration

should be used. An ontology-based requirements specification tool may help to reduce

misunderstanding, missed information, and help to overcome some of the barriers that

make successful acquisition of requirements.

Using ontologies with Enterprise Modelling offers several advantages.

Ontologies ensure clarity, consistency, and structure to a model. They promote efficient

MII-DS-07T-17-10 41

model definition and analysis. Generic enterprise ontologies allow for reusability and

automation of components. A common ontology allows to ensure shared understanding,

clearer communication, and more effective coordination among the various divisions

of an enterprise. These lead to more efficient production and flexibility within the

enterprise [76].

Summary

To structure domain knowledge, which is the key factor for successfully

developed requirements specification, the methodology is needed. Requirements

Engineering calls for an explicit domain knowledge. This domain knowledge generally

resides in different areas, such as experiences, functionality, non-functional

requirements, stakeholders and so on. Thus, it is necessary to concentrate this

knowledge for the most appropriate application. Knowledge-driven techniques seem

promising for this purpose. Kossmann et. al. in [66] define Knowledge-driven

Requirements Engineering when Requirements Engineering is guided not only by a

process but as well by knowledge about the process and the problem domain. In order

to use knowledge-driven techniques, it is necessary to apply knowledge repositories

that can be easily updated and utilised [39].

Furthermore, inferencing and decision support must be applicable on such a

repository. Ontologies are one possible way for representing, organising and reasoning

about the complex knowledge that requirements documents embody and have been

proposed to be used in different ways for RE [39].

MDA based EMM mostly focuses on consistency of UML models generation.

Also it is used as knowledge repository, where domain knowledge is stored. It’s

structure can be easily adapted to any domain, which means it is easily reusable. That

is a huge advantage for the research. But even though, it has advantages, it has some

drawbacks in a scope of requirements engineering too:

• It does not provide semantic concept of the requirements;

• It does not provide rules and logic for associations above requirements;

• It does not provide a shared common understanding of the structure of

information among people or software agents;

• It does not provide rules for completeness, unambiguity and traceability

criteria.

MII-DS-07T-17-10 42

For the problems mentioned above solving, EMM and ontology integration

should be used. An ontology-based requirements specification tool may help to reduce

misunderstanding, missed information, and help to overcome some of the barriers that

make successful acquisition of requirements.

Using ontologies with Enterprise Modelling offers several advantages.

Ontologies ensure clarity, consistency, and structure to a model. They promote efficient

model definition and analysis.

1.4 The concept of ontology based model transformations

In this chapter, deeper overview of the transformations will be proposed, as

models transformations will be used in between OWL and UML, OWL and RDF,

Enterprise metamodel and Requirements ontology. To establish a successfull method,

transformations will be required in several points of methodology.

As a realization of semantic-based model transformations, ontology-based

model transformation needs the following parts to achieve an increased level of

abstraction [24]:

• Semantic Transformation: A semantic transformation is a transformation

specification describing a transformation between two ontologies. A semantic

transformation is specified between a source ontology and a target ontology (see figure

1), but it can also be bidirectional. For horizontal transformations the semantic

transformation normally is the ID.

• Syntax-semantic Binding: The syntax-semantic binding specifies the

connection between syntax (metamodels) and semantics (ontologies).

• MO-Binding: (Metamodel-ontology) MO-Bindings specify how semantic

information can be derived model elements.

• OM-Binding: (Ontology-metamodel) OM-Bindings specify how ontology

elements are expressed in models.

MII-DS-07T-17-10 43

Fig. 9 Overall approach of ontology-based model transformation

In figure 9 we can see concepts and design of ontology-based model

transformation. A transformation is specified on the basis of ontologies, called semantic

transformation. The transformation between the two ontologies, a source ontology and

a target ontology, is described by the means of this semantic transformation. Elements

of the source ontology are transformed to elements of the target ontology. The

connection between syntax defined in metamodels and the semantics of the ontology

elements has to be defined by a syntax-semantic binding, done with a MO-Binding and

an OMBinding. In a mid-term perspective these bindings have to be derived

semiautomatically from already existing transformations and bindings in combination

with metamodel analysis [24].

Figure 9 shows the overall approach of ontology-based model transformation.

A combination of one semantic transformation, one MO-Binding and one OM-Binding

form a transformation configuration. A transformation configuration is the basis for an

automated generation of common model transformations. A generator for model

transformations takes a transformation configuration as well as appropriate metamodel-

and ontology-definitions as input and outputs a model transformation specified in an

intermediate model transformation language. Introducing an intermediate

transformation language aims to obtain a common representation of model

transformations independent to specific transformation languages, maybe on the basis

MII-DS-07T-17-10 44

of a QVT common language and comparable to the platform independent model in the

MDA approach. The generated model transformation is input to arbitrary MDA-tools

performing model transformations [24].

Fig. 10 Metamodel-based transformation

Model transformations specified between ontologies, will lead to interoperable

model transformations independent of methodologies’ tailoring to specific projects.

The specification of multiple model transformations will be reduced to few or even one

ontology-based model transformation. Furthermore, one specification of an ontology-

based model transformation can be used to generate multiple transformations for

specific modeling environments (and their transformation languages) automatically

[24].

1.1.4 UML transformation to Ontology

An ontology is a kind of data model. The UML Class Diagram is a rich

representation system, widely used, and well supported with software tools. Why not

use UML for representing ontologies?

One reason is that a UML Class Diagram is a specification for a system. It shows

schemas, but does not necessarily fully specify instances. Even if instances are fully

specified, it is not common to represent a large population of concrete instances. We

know that the shared worlds modeled with ontologies contain instances as well as

schemas, for example the periodic table of the elements includes classes like rare earths

and noble gases, but also individuals like hydrogen and helium. UML is intended to be

used with some sort of implementation, like an SQL database manager, which

MII-DS-07T-17-10 45

completes the specification of the instances, and represents and stores the concrete

populations.

Further, a UML Class Diagram is generally used by the software engineers

building a system as part of the design specification. It can be a component of a

computer-aided software engineering tool which can automatically generate

implementations. But class diagrams are not intended for public use, to be combined as

components in larger ontologies, or to be used at run-time. It is of course possible to

adapt UML to these purposes, but they are not part of its design.

Finally, and perhaps most importantly, an ontology by definition is intended to

be reused, or to have multiple implementations across applications. While reuse is also

an important aspect of the OMG’s Model-Driven Architecture methodology, in the case

of an ontology, the ability to unambiguously interpret the definitions and axioms

expressed is essential to enabling automated reasoning. There must be some way of

verifying that two implementations committed to a single ontology are logically

consistent with one another. Common Logic and OWL enable this by having a formal

semantics expressed as a model theory. Two implementations which generate the same

objects by definition agree. UML does not at present have a published model theory or

proof theory that would enable such automated validation or reasoning processes.

So this is why the OMG called for development of an ontology development

metamodel distinct from UML.

1.1.5 Mappings

For example, there are two different ways to map N-ary associations from UML

to OWL, depending on whether we take OWL Full or OWL DL as target. OWL has a

mandatory universal superclass (owl:Thing) which can map to a universal superclass in

UML, but this is contrary to normal practice in UML modeling. A particular project

might analyze the uses of universal properties in the OWL source model and choose to

declare a number of more general but not universal superclasses in the UML target.

In the W3C Semantic Web Best Practices working report on Topic Map

mappings [14], the point is made several times that there are different ways to map

particular structures, and that each way has its advantages and disadvantages. In any

particular project, design decisions will be taken in favor of advantages and against

disadvantages so different projects will map in different ways (šaltinis: OMG ODM).

MII-DS-07T-17-10 46

The mapping strategy in the ODM is illustrated in Fig. 8.10. Note that there will

be mappings from each metamodel to and from OWL Full, except for CL for which

there is only a mapping from OWL Full.

Profiles and mappings are related. Consider these cases:

We use a MOF tool to develop an OWL ontology, which is then serialized using

the XML markup XMI defined for the MOF. In this case we use the ODM OWL MOF

model alone, and do not need mapping or profile.

We have a native UML model which we want to serialize as OWL XMI (using

OWL-derived markups). In this case we use both the MOF UML and MOF OWL

metamodels, together with the UML -> OWL mapping, but no profile.

We have an OWL-profiled UML model to be serialized as OWL XMI. Here we

use the ODM OWL MOF model and the UML2 MOF model with the UML2 -> OWL

mapping and information from the ODM OWL profile for UML.

These three are all useful scenarios. The third would be a more complete OWL

model using UML notation than the second, while the first does not care about UML at

all.

Further, if profiles are being used the modeler might want to use UML notation

to create and visualize an ontology (say in OWL). This implies that two MOF models

are required, one for UML and the other for OWL. The mapping UML -> OWL is

required, because without application of a mapping the final result would be UML XMI

rather than OWL XMI (šaltinis: OMG ODM).

The ontologies are used throughout the enterprise system development life cycle

process to augment and enhance the target system as well as to support validation and

maintenance. Such ontologies should be complementary to and augment other UML

modeling artifacts developed as part of the enterprise software development process.

Knowledge engineering requirements may include some ontology development for

traditional domain, process, or service ontologies, but may also include:

• Generation of standard ontology descriptions (e.g., OWL) from UML models.

• Generation of UML models from standard ontology descriptions (e.g., OWL).

• Integration of standard ontology descriptions (e.g., OWL) with UML models.

Summary

MII-DS-07T-17-10 47

To ensure successful MDA and ODM integration to our solution, model

transformations are essential. This is quite demanding approach, because it has to be

taken into account, that MDA relies on UML language and ODM relies on OWL

language. But these two languages can be easily mapped together, there are many

transformation engines to support that process.

1.5 Existing technologies in the research field
To develop a successfull method, existing methodologies should be reviewed,

as they re presented for the same or similar problematics. Also, knowing the market of

the research problematics, is a huge advantage.

Ontologies are rapidly growing technology in Requirement Engineering as well

as in general. In the scope of the research, only ontologies that applies to requirements

engineering will be analysed. The table of RE specific ontologies and methodologies

are presented below.

Table 5. Ontologies in Software Engineering

Author(s) Presented

methodology

Description Key features

Kossmann

[66]
OntoREM a comprehensive specification of the

ODRE methodology, including the

underlying concepts in the RE domain and

relationships between them; consists of the

OntoREM Metamodel ontology and a

number of domain ontologies; All

requirements are managed with DOORS2

from IBM; comes with a workflow for the

RE process; concepts

OntoREMGoalHierarchy and

OntoREMRequirement with their

described relationships define “templates”

of goals, soft goals and requirements that

are used when creating an instance of a

goal, soft goal or requirement and are

linked to the relevant areas of available

domain ontologies.

Based on MDA;

Cover domain

knowledge;

Create templates;

Related to goals;

Jureta [58] CORE Capture basic stakeholder concerns during

RE, namely beliefs, desires, intentions,

and evaluations; the ontology grounds on

the foundation ontology DOLCE; it

proposes four relationships to relate

instances of concepts in CORE: refine,

approximate, compare and evaluate.

Not based on MDA;

Does not cover

domain knowledge;

Covers only basic

requirements.

Kayia [59] FRS Ontology method that allows for requirements

analysis of a functional requirements

specification; the method is based on a

domain ontology and a mapping to the

requirement specification; the ontology

consists of a thesaurus and inference rules.

Not based on MDA;

Cover domain

knowledge;

Cover only functional

requirements.

MII-DS-07T-17-10 48

Riechert

[60]
SWORE support the RE process semantically;

provides a semantic structure for capturing

requirements information and linking this

information to domain- and application-

specific vocabulary; in order to allow the

various stakeholder a collaborative

elicitation of requirements, SWORE has

been integrated into the semantic

collaboration platform SoftWiki.

Unfortunatelly, this project is closed.

Not based on MDA;

Cover domain

knowledge;

Formal semantics.

Kassab and

Daneva in

[65]

NFR

Ontology

NFR ontology considers non-functional

requirements early in software

development. The NFR ontology defines

the meaning of a set of concepts for the

NFR domain. The ontology allows for

capturing relationships of NFRs with

functional requirements in the form of

association points. NFRs can be further

decomposed (AND/OR decomposition)

and have operationalizations, that is a

refinement of a NFR into a solution in the

target system (operations, functions, data

representations and architecture design

decisions) that will satisfy the NFR.

Oriented to non-

functional

requirements.

Kof [62] NL approach A method to build a domain ontology

from requirement documents provided in

natural language. Therefore, terms are

extracted from text and clustered, a

taxonomy is built. Associations between

the extracted terms are identified and

make up together with the associated

terms the domain model. While the

formatting, tagging, parsing and concept

cluster building are automatic, the

identification of cluster intersection and

taxonomy building as well as deciding

which associations are sensible remains

interactive and, thus, need human

interaction.

Not based on MDA;

Cover domain

knowledge;

Ying et al.

[63]
Inconsistency

checking

algorithm

An algorithm for detecting and resolving

inconsistencies of domain ontologies for

RE. The domain ontology is considered to

be a thesaurus containing all the

information about domain concepts and

their role. Thus, inconsistency of domain

knowledge can be found by ontology

consistency checking. The algorithm is

based on the Tableaux algorithm,

consistency rules are formally defined and

semantic checking is proposed to resolve

detected inconsistencies. However,

consistency checking is only performed

regarding the logical consistency of the

ontology. That is checking whether the

ontology is satisfiable, which means that

there is no contradicting information in the

ontology.

Cover domain

knowledge

MII-DS-07T-17-10 49

Zhu et al. in

[64]
Requirements

refinement

tree

An ontology-based approach for

inconsistency measurement of

requirements specifications based on a

requirements refinement tree. Therefore,

requirements are stepwise decomposed

until a requirement can be realized. During

this process of requirements refinement,

external requirements from the customers

are extracted first.

Not based on MDA.

Does not cover

domain knowledge

Eric Yu

[50]
i*/Tropos The agent-oriented modelling framework

i* was developed for modelling and

reasoning about organisational

environments and their information

systems. The framework can be used for

several purposes, e.g. Requirements

Engineering and Software Process

Modelling.

Based on MDA;

Does not cover

domain knowledge;

Goal oriented.

Darimont et

al. [53]
KAOS The KAOS (Knowledge Acquisition in

automated Specification or Keep All

Objects Satisfied methodology is a GORE

approach. KAOS is described in as a

multi-paradigm framework that allows to

combine three levels of expression and

reasoning: semi formal for modelling and

structuring goals, qualitative for selections

among alternatives and formal for more

accurate reasoning when needed. A

generic ontology forms a metamodel for

requirements.

Not based on MDA;

Does not cover

domain knowledge;

Goal oriented.

Farefelder

[52]
Ontology-

driven

guidance for

requirements

elicitation

A prototype of a semantic guidance

system that assists the requirements

engineer in capturing requirements by

using semi-formal representation. Their

approach aims to prevent specifying and

finally resolving incorrect requirements.

Instead, the prototype automatically

proposes at least parts of the requirements

by using information originating from a

domain ontology. On these suggestions

the requirements engineer can build on to

define requirements.

Cover domain

knowledge

Castaneda

et al. [40]
OntoSRS A framework is divided into three

application areas, such as: the description

of requirements specification documents,

the formal representation of the

application domain knowledge, and the

formal representation of requirements.

Framework addresses the issues in RE,

creates key points where to integrate

ontologies in RE process, but more effort

is needed to implement the framework.

Based on MDA;

Cover domain

knowledge;

IEEE criteria oriented

Several ontology-based requiremnts engineering concepts were analyzed in this

chapter. Key formal criteria were proposed, according to IEEE organization, standard

830. It is stated that these criteria are non-negotiable while speaking about good

requirements specification. It could be extended, mapped, but the base is non-

negotiable.

MII-DS-07T-17-10 50

Mapping with already existing solutions and criteria was made during this

analysis and results came up to the table below.

Table 6. Our solution and existing solutions compare

Criteria/

Methods

Correctness Consistency Unambiguity Completeness Extendability Modifiable Traceable

CORE - - + - + + -
ontoREM

(ODRE)
- + - + + + -

i*/Tropos - + - - - - -
FRS - + - + - - +

SWORE + - - + + + -
NL approach - - - - + + -

Req.refinement

tree
+ - - + - - -

NFR (non-

func.)
- - + - - - -

Inconsistency

checking rules
- + - - - + -

KAOS - - - - + + -
OntoSRS - + + + - - -

Guidance for

req elicitation
+ + - - - - -

Our solution + + + + +/- +/- +

Several problems were concluded during this analysis, that already proposed

methods do not cover:

o Requirement knowledge is not sufficiently covered. Intentions, risks,

obstacles and decisions are not documented during RE and thus, are not available at

later stages during software development.

o Most of the solutions do not meet correctness and traceability

requirements. Also very few cover unambiguity and completeness criteria.

o Requirement problems (e.g. conflicts, unstated information) are detected

too late or not all.

o To dig deeper into realisation of the methods, relationships among

requirements are inadequately captured and are often limited to binary relations

between requirements instead of defining which kind of relation is meant (e.g.

excluding, alternative, generalization).

o Methods need richer and higher-level abstractions.

o Some of the methods are goal-oriented on requirements engineering, so

that means it does not cover domain knowledge, scenario-based requirements.

MII-DS-07T-17-10 51

o Some of the methods are incomplete or oriented only to functional or

non-functional requirements.

o Not all of the methods and tools are still supported, which shows that

they were not very successful and beneficial.

o Just a few methods are oriented to requirements analysis in the RE

process. Mostly of them are oriented to requirements elicitation.

Also, one of the main problems which is very relevant to our research is that not

all of the methods listed above are based on MDA architecture. Only ODRE implicates

or mentions ISO standards base of the requirements engineering while developing the

method.. Only OntoSRS gives brief reasoning of the method based on IEEE 830

standard.

According to these problems we propose a solution, that will cover them and

improve the requirements specification quality. The most promising methods are

ODRE and OntoSRS. OntoSRS is no longer supported, but several ideas will be taken

into account while modelling our solution.

Our solution benefits:

 Domain knowledge oriented;

 Reusable and extendable;

 Will cover requirements analysis and specification phases;

 Structure the knowledge by using knowledge-based methods;

 Upgraded successful ODRE and OntoSRS methods;

 Will cover corectness, unambiguity, completeness and traceability by

IEEE 830 criteria;

 Will structure the requirements specification according to well known

IEEE 830 template to ensure correctness, unambiguity and completeness of the

requirements;

 Ontology and Enterprise metamodel will be used as knowledge

repository about domain;

 The solution will be based on the standard methodologies, such as MDA.

Summary

MII-DS-07T-17-10 52

Requirements engineering process can have big benefits by adapting ontologies

to it’s technology. While analyzing requirements engineering processes, standards for

correct SRS and already existing tools to support RE process, we came up to the

conclusions, that many tools are already created and they are created to solve different

problems, different aspects of RE. Some of them are based on the standards, some of

them not.

Key argument why additional solution is needed is that in existing ones

requirement knowledge is not sufficiently covered. Intentions, risks, obstacles and

decisions are not documented during RE and thus, are not available at later stages

during software development. This knowledge is covered by MDA use as a framework

for a solution. Most of them covers only one small part of the RE, but as it is stated in

IEEE 830 standard, which is applicable to ISO and SEBoK, for requirements

specification to be consistent, complete and unambiguous, all of the related parts of it

should be described and analysed. That is why the solution should be created from a

broader vision to requirements engineering process and requiremens specification

document.

1.6 Conclusions

Conclusions of the first chapter on literature review and analysis. In the first

chapter, based on literature review and analysis, several definitions and approaches

were introduced. Ontology meaning and concept was introduced, comparative analysis

based on criteria of ontology languages and tools was held. Also requirements

engineering concept and ontology integration into it was analysed. Existing

methodologies were presented that are trying to solve variuous problems, related to

requirements engineering concept. Domain metamodel importance was introduced and

classic approaches described, as well as mapping and transformation rules.

An ontology-based requirements specification tool may help to reduce

misunderstanding, missed information, and help to overcome some of the barriers that

make successful acquisition of requirements so difficult.

Requirements engineering process can have big benefits by adapting ontologies

to it’s technology. While analyzing requirements engineering processes, standards for

correct SRS and already existing tools to support RE process, we came up to the

conclusions, that many tools are already created and they are created to solve different

MII-DS-07T-17-10 53

problems, different aspects of RE. Some of them are based on the standards, some of

them not.

Key argument why additional solution is needed is that in existing ones

requirement knowledge is not sufficiently covered. Intentions, risks, obstacles and

decisions are not documented during RE and thus, are not available at later stages

during software development. This knowledge is covered by MDA use as a framework

for a solution. Most of them covers only one small part of the RE, but as it is stated in

IEEE 830 standard, which is applicable to ISO and SEBoK, for requirements

specification to be consistent, complete and unambiguous, all of the related parts of it

should be described and analysed. That is why the solution should be created from a

broader vision to requirements engineering process and requiremens specification

document.

Requirements Engineering calls for an explicit domain knowledge. This domain

knowledge generally resides in different areas, such as experiences, functionality, non-

functional requirements, stakeholders and so on. Thus, it is necessary to concentrate

this knowledge for the most appropriate application. Knowledge-driven techniques

seem promising for this purpose. Knowledge-driven Requirements Engineering when

Requirements Engineering is guided not only by a process but as well by knowledge

about the process and the problem domain. In order to use knowledge-driven

techniques, it is necessary to apply knowledge repositories that can be easily updated

and utilised.

For domain knowledge repository, MDA based EMM was chosen as the most

relevant approach as it stands out for classic methodologies. So combined MDA and

ODM methodologies, we can get great results. An ontology-based requirements

specification tool may help to reduce misunderstanding, missed information, and help

to overcome some of the barriers that make successful acquisition of requirements.

Using ontologies with Enterprise Modelling offers several advantages. Ontologies

ensure clarity, consistency, and structure to a model. They promote efficient model

definition and analysis.

These conclusions leads to the methodology of the research to be presented in

the second chapter.

MII-DS-07T-17-10 54

2 Other activities during 2015-2017 year of study
Exams taken

Title of the lecture Credits
Planned

date

Exact date

Grade

Informatikos ir informatikos inžinerijos

tyrimo metodai ir metodika

9 2016.05.20. 2016.06.09 6

Informacijos poreikių specifikavimas 7 2017.03. 2016.09.27 9

Žiniomis grindžiama kompiuterizuota

informacijos sistemų inžinerija

7 2016.10. 2017.04.14 8

Sistemų analizės technologijos 7 2017.09. 2016.10.20 8

Conferences

 DATAMSS2015 - 7th International Workshop Data Analysis Methods for

Software. Date: gruodžio 3-5 d., 2015 m., Druskininkai.

Publications

 Veitaitė I., Lopata A., N.Žemaitytė (2016) Enterprise Model based UML

Interaction Overview Model Generation Proces. 19th International Conference

on Business Information Systems, BIS2019 International Workshop, Series:

Lecture Notes in Business Information Processing. ISBN 978-3-319-26762-3

The text of the publication will be presented in the Appendix No 1.

Activities in the Kaunas faculty

Consultation of the 4th course bachelor student.

MII-DS-07T-17-10 55

3 References

1. [1] Mizoguchi, R. and Bourdeau, J. (2000), "Using ontological engineering to

overcome common AI-ED problems", International Journal of Artificial

Intelligence in Education, vol. 11, pp. 107-121.

2. [2] Boris Motik, Alexander Maedche, and Raphael Volz. A Conceptual

Modeling Approach for Semantics-Driven Enterprise Applications

3. [3] Duineveld, A. and Stoter, R. and Weiden, M. and Kenepa, B. and Benjamins,

V. (2000), "Wondertools? A comparative study of ontological engineering

tools", International Journal of Human-Computer Studies, vol. 52, no. 6, pp.

1111-1113.

4. [4] Helmut Meisel, Ernesto Compatangelo (2004) An ontology-based

architecture for the design of knowledge bases in Intelligent Instructional

Systems. Department of Computing Science, University of Aberdeen AB24

3UE Scotland, UK

5. [5] Gasevic, D.V., Djuric, D.O. and Devedzic, V.B. Bridging MDA and OWL

Ontologies. Journal of Web Engineering, Vol. 4, No. 2, pp. 18-143, 2005

6. [6] D.Brickley and R.V. Guha. RDF Vocabulary Description Language 1.0:

RDF Schema, http://www.w3.org/TR/rdf-schema/

7. [7] Bhatt, M. and Taniar, D. A Distributed Approach to Sub-Ontology

Extraction. Proceedings of the 18
th

International Conference on Advanced

Information Networking and Application (AINA’04), IEEE, 2004.

8. [8] Colomb, R.M., Raymond, K., Hart, L., Emery, P., Chang, D., Kendall, E.

and Frankel, D. Draft Version 2.0: The Object Management Group Ontology

Definition Metamodel, 2004

9. [9] Cranfield, S. and Purvis, M. UML as an Ontology Modeling Language, In

Workshop on Intelligent Information Integration, 16
th

International Joint

Conference on Artificial Intelligence, IJCAI-99, 1999

10. [10] Baclawski, K., Kokar, M., Kogut, P., Hart, L., Smith, J., Holmes, W.,

Letkowski, J., Aronson, M. Extending UML to Support Ontology Engineering

for the Semantic Web. UML 2001, Toronto, CA, Oct 2001.

http://www.w3.org/TR/rdf-schema/

MII-DS-07T-17-10 56

11. [11] Bechhofer, S., Van Harmelen, F., Hendler, J., Horrocks, I., McGuiness,

D.L. Patel-Schneider, P.F. and Stein, L.A. OWL Web Ontology Language

Reference. W3C Recommendation, http://www.w3.org/TR/2004/REC-owl-ref-

20040210/, 2004

12. [12] Gruber T.R. A Translation Approach to Portable Ontology Specifications.

Knowledge Acquisition, 5(2): 199-220, 1993

13. [13] Pretorius, A.J. Visual Analysis for Ontology Engineering, Journal of Visual

Languages and Computing, Vol. 16, pp. 359-381, 2005

14. [14] Pisanelli, D. M., Gangemi, A., Steve, G. Ontologies and Information

Systems: the Marriage of the Century? In the International Workshop on

Governmental Methodology for Software Providence (LYEE02), 2002.

15. [16] Hart, L., Emery, P., Colomb, R. M., Raymond, K., Chang, D., Ye, Y.,

Kendall, E. and Dutra, M. Usage Scenarios and Goals for Ontology Definition

Metamodel. Lecture Notes in Computer Science, Vol. 3306, pp 596, Springer

Berlin, 2004

16. [17] M. Nazir Ahmad, Robert M. Mohd Taib Abd Wahid (2007) A Comparison

of Ontology Servers

17. [18] IDEAS: A Gap Analysis, www.ideas-roapmap.net, 2003.

18. [19] D. S. Frankel: Model Driven Architecture – Applying MDA to Enterprise

Computing, Wiley, 2003.

19. [20] O. Lassila and R.R.Swick. Resource Description Framework (RDF) Model

and Syntax Specification, http://www.w3.org/TR/REC-rdf-syntax/

20. [21]. T. Gardner, C. Griffin, J. Koehler, R. Hauser: A review of OMG MOF 2.0

Query / Views / Transformations Submissions and Recommendations towards

the final Standard, Meta-Modelling for MDA Workshop, 2003.

21. [22] OMG: Model Driven Architecture (MDA), OMG ormsc/2001-07-01, 2001

22. [23] D. Djurić, D. Gašević, V. Devedžić: Ontology Modeling and MDA, Journal

of Object Technology, ETH Zurich, 2005.

23. [24] Stephan Roser. Advisor: Bernhard Bauer (2006) Ontology based model

transformations. Progamming of Distributed Systems Institute of Computer

Science, University of Augsburg, Germany.

24. [25] B. Elvesæter, A. Hahn, A-J. Berre, T. Neple: Towards an Interoperability

Framework for Model-Driven Development of Software Systems, First

http://www.w3.org/TR/REC-rdf-syntax/

MII-DS-07T-17-10 57

International Conference on Interoperability of Enterprise Software and

Applications, Geneva Switzerland, 2004.

25. [26] Julita Bermejo Alonso (2006) Ontology – based Software Engineering.

ASLab-ICEA-R-2006-016. URL: http://www.aslab.org/documents/ASLab-

ICEA-2006-016.pdf

26. [27] Force, S. E. T. (2001). Ontology driven architectures and potential uses of

the semantic web in systems and software engineering.

27. [28] Tanasescu, V. (2005). An ontology–driven life–event portal. Master,

Computer Science.

28. [29] Ruiz, F. and Hilera, J. (2006). Ontologies for Software Engineering and

Software Technology, chapter Using Ontologies in Software Engineering and

Technology, pages 49–102. Springer-Verlag Berlin Heidelberg.

29. [30] Hesse, W. (2005). Ontologies in the software engineering process. In Lenz,

R., editor, Proceedings of Tagungsband Workshop on Enterprise Application

Integration (EAI2005), Berlin, Germany. GITO–Verlag.

30. [31] Abran, A., Cuadrado, J., Garc´ıa-Barriocanal, E., Mendes, O., S´anchez-

Alonso, S., and Sicilia, M. (2006). Ontologies for Software Engineering and

Software Technology, chapter Engineering the Ontology for the SWEBOK:

Issues and Techniques, pages 103–121. Springer-Verlag Berlin Heidelberg.

31. [32] Liao, L., Qu, Y., and Leung, H. (2005). A software process ontology and

its application. In Proceedings of Workshop on Sematic Web Enable Software

Engineering (SWESE), Galway, Ireland.

32. [33] Grûber, T.: A translation approach to portable ontology specification.

Knowledge Acquisition 5(2) (1993) 199-220.

33. [34] Allemang, D., Hendler, J.A.: Semantic web for the working ontologist:

Modeling in RDF, RDFS and OWL. Elsevier, Amsterdam (2008).

34. [35] Brachman, R., Levesque, H.: Knowledge Representation and Reasoning.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2004).

35. [36] Smith, M., Welty, C., McGuiness, D.: Owl web ontology language guide.

Recommendation W3C 2(1) (2004).

36. [37] Verónica Castañeda, Luciana Ballejos, Ma. Laura Caliusco, Ma. Rosa Galli

(2010) The Use of Ontologies in Requirements Engineering. Vol. 10 Issue 6

(Ver 1.0) November

http://www.aslab.org/documents/ASLab-ICEA-2006-016.pdf
http://www.aslab.org/documents/ASLab-ICEA-2006-016.pdf

MII-DS-07T-17-10 58

37. [38] Petr Kroha, Jose Emilio Labra Gayo (2008) Using Semantic Web

Technology in Requirements Specifications

38. [39] Katja Siegemund, Edward J. Thomas, Yuting Zhao, and Uwe Assmann

(2010) Towards Ontology-driven Requirements Engineering

39. [40] V. Castaneda, L. Ballejos, L. Caliusco, R. Galli (2010) The use of Ontlogies

in Requirements Engineering. Vol. 10 Issue 6 (Ver 1.0) November 2010. Global

journal of researches in engineering.

40. [41] J. Trinkunas, O. Vasilecas (2009) Ontology transformation: from

requirements to conceptual model. Scientific Papers, Universit y of Latvia,

2009. Vol. 751 Computer Science and Information Technologies

41. [42] Gómez-Pérez, A., Fernández-López, M., Corcho, O.: Ontological

Engineering. Springer, New York. USA. (2004).

42. [50] Eric S. K. Yu. Towards Modelling and Reasoning Support for Early-Phase

Requirements Engineering. In Proceedings of the 3rd IEEE International

Symposium on Requirements Engineering, RE ’97, pages 226–235,

Washington, DC, USA, 1997. IEEE Computer Society.

43. [52] Stefan Farfeleder, Thomas Moser, Andreas Krall, Tor Stålhane, Inah

Omoronyia, and Herbert Zojer. Ontology-driven Guidance for Requirements

Elicitation. In Proceedings of the 8th Extended Semantic Web Conference on

The Semantic Web: Research and Applications - Volume Part II, ESWC’11,

pages 212–226, Berlin, Heidelberg, 2011. Springer-Verlag.

44. [53] R. Darimont, E. Delor, P. Massonet, and A. van Lamsweerde.

GRAIL/KAOS: an Environment for Goal-driven Requirements Engineering. In

Proceedings of the 19th international conference on Software engineering, ICSE

’97, pages 612–613, New York, NY, USA, 1997. ACM.

45. [54] http://stackoverflow.com/questions/1740341/what-is-the-difference-

between-rdf-and-owl

46. [56] https://www.slideshare.net/rlovinger/rdf-and-owl

47. [58] Ivan J. Jureta, John Mylopoulos, and Stéphane Faulkner. A Core Ontology

for Requirements. Appl. Ontol., 4(3-4):169–244, 2009.

48. [59] Haruhiko Kaiya and Motoshi Saeki. Ontology Based Requirements

Analysis:

http://stackoverflow.com/questions/1740341/what-is-the-difference-between-rdf-and-owl
http://stackoverflow.com/questions/1740341/what-is-the-difference-between-rdf-and-owl
https://www.slideshare.net/rlovinger/rdf-and-owl

MII-DS-07T-17-10 59

49. Lightweight Semantic Processing Approach. In Proc. Fifth International

Conference on Quality Software (QSIC 2005), 2005.

50. [60] Thomas Riechert, Kim Lauenroth, and Jens Lehmann. Semantisch

unterstütztes Requirements Engineering. In Proceedings of the SABRE-07

SoftWiki Workshop, 2007.

51. [62] Leonid Kof. Natural Language Processing For Requirements Engineering

Applicability.

52. In Proceedings of the Workshops, page 2004, 2004.

53. [63] Yang Ying-ying, Li Zong-yon, and Wang Zhi-xue. Domain Knowledge

Consistency Checking for Ontology-Based Requirement Engineering. In CSSE

’08: Proceedings of the 2008 International Conference on Computer Science

and Software Engineering, pages 302–305, Washington, DC, USA, 2008. IEEE

Computer Society.

54. [64] Xuefeng Zhu. Inconsistency Measurement of Software Requirements

Specifications: An Ontology-Based Approach. In ICECCS ’05: Proceedings of

the 10th IEEE International Conference on Engineering of Complex Computer

Systems, pages 402–410, Washington, DC, USA, 2005. IEEE Computer

Society.

55. [65] M. Kassab, O. Ormandjieva, and M. Daneva. An Ontology Based

Approach to Non-functional Requirements Conceptualization. Software

Engineering Advances, International Conference on, 0:299–308, 2009.

56. [66] M. Kossmann, R. Wong, M. Odeh, and A. Gillies. Ontology-driven

Requirements Engineering: Building the OntoREM Meta Model. In Information

and Communication Technologies: From Theory to Applications, 2008. ICTTA

2008. 3rd International Conference on, pages 1 – 6, 2008.

57. Šaltinis: [67]

58. [72] Su, X., Ilebrekke, L.: A Comparative Study of Ontology Languages and

Tools. In: Pidduck, A.B., Mylopoulos, J., Woo, C.C., Ozsu, M.T. (eds.) CAiSE

2002. LNCS, vol. 2348, pp. 761–765. Springer, Heidelberg (2002)

59. [73] D. Kalibaitienė, O. Vasilecas, Survey on Ontology languages, 2011,

Vilnius Gediminas Technical University. DOI: 10.1007/978-3-642-24511-4_10

· Source: DBLP

MII-DS-07T-17-10 60

60. [74] J. Trinkūnas, Research on conceptual data modelling using Ontology,

(2010), Doctoral dissertation, VGTU, Vilnius. ISBN 978-9955-28-589-2

61. [75] T. Slimani (2015) Ontology Development: A Comparing Study on Tools, Languages and

Formalisms. Indian Journal of Science and Technology, Vol 8(24), DOI:

10.17485/ijst/2015/v8i34/54249. ISSN (Online) : 0974-5645

62. [76] Veitaitė I., Lopata A., Žemaitytė N. (2016) Enterprise Model based UML

Interaction Overview Model Generation Proces. 19th International Conference

on Business Information Systems, BIS2019 International Workshop, Series:

Lecture Notes in Business Information Processing. ISBN 978-3-319-26762-3.

63. [77] SEBoK: http://sebokwiki.org/wiki/System_Requirements

1. https://www.w3.org/TR/2012/REC-owl2-primer-20121211/#OWL_Syntaxes

2. https://www.w3.org/OWL/

3. https://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/

4 Appendixes

Appendix No 1

Ontologies and Enterprise
Modelling based UML Models
Generation Process
(UML Interaction Overview Case)

Audrius Lopata, Ilona Veitaitė, Neringa Žemaitytė

Vilnius University, Kaunas Faculty of Humanities, Department of Informatics

Muitinės g. 8, LT-44280, Kaunas, Lithuania

Audrius.Lopata@khf.vu.lt, Ilona.Veitaite@khf.vu.lt,

Neringa.Zemaityte@khf.vu.lt,

http://sebokwiki.org/wiki/System_Requirements
https://www.w3.org/TR/2012/REC-owl2-primer-20121211/#OWL_Syntaxes
https://www.w3.org/OWL/
https://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
mailto:Audrius.Lopata@khf.vu.lt
mailto:Ilona.Veitaite@khf.vu.lt
mailto:Neringa.Zemaityte@khf.vu.lt

MII-DS-07T-17-10 61

Abstract. The main scope of the research is to analyse Unified Modelling Language (UML) models

generation process from Enterprise Model (EM) in Information Systems (IS) development process

by using knowledge-based subsystem. The knowledge-based subsystem is proposed as an additional

computer aided software engineering (CASE) tool component to avoid IS development process

based on empirics. For comprehensible perception there is also presented relation between EM and

ontologies and its use in generation process.

As the result of this part of research transformation algorithms are presented and described. These

algorithms are capable of whole UML models elements generation from Enterprise Model. Example

of UML Interaction Overview model generation illustrates full process.

Keywords: Enterprise Modelling, Knowledge-based, IS engineering, UML, CASE, Ontology,

Interaction Overview model.

1 Introduction

In a modern world software development and software applications are becoming more

complex and demanding. Developers, analysts, engineers, researchers are creating and

seeking for new techniques and procedures to streamline software engineering

processes to ensure shorter development time and reduce costs by re-using different

components. The development of software systems is a complex activity which may

imply the participation of people and machines (distributed or not). Therefore, different

stakeholders, heterogeneity and new software features make software development a

heavily knowledge-based process [1, 11].
In a modern day enterprise engineering, it is paramount that Enterprise Models are

grounded in a well-defined, agreed-upon Enterprise Architecture that captures the
essentials of the business, IT, and its evolution. Enterprise architectures typically
contain different views (e.g. Business, Information, Process, Application, Technical)
on the enterprise that are developed by distinct stakeholders with a different background
and knowledge of the business. Consequently, the developed Enterprise Models that
populate these views are hard to integrate. A possible solution for this integration
problem is using a shared terminology during the development of these different views
[2]. Such explicit formal representations, often materialized in the form of ontology –
in a business context called an enterprise-specific ontology – provide a myriad of
advantages. Ontologies are shared views of domains. They provide conceptualizations
that are agreed upon by participants in collaborative action and decision making. The
explicit existence of such shared perspectives makes it possible for both people and
programs to collaborate by ensuring that everybody makes the same distinctions and
uses the same terms with the same meaning [19]. On an intra-organizational level, they
ensure model re-usability, compatibility and interoperability, and form an excellent
basis for enterprise-supporting IT tools, such as Enterprise Resource Planning (ERP)
systems, business intelligence (BI) tools or information systems (IS), for which they
serve as common terminology. On an inter-organizational level, they facilitate
interoperability, cooperation and integration by allowing formal mappings between,
and alignment of separately developed Enterprise Models [12].

2 Enterprise Modelling and Ontologies relation

An Enterprise Model is a computational representation of the structure, activities,

processes, information, resources, people, behaviour, goals and constraints of a

business, government, or other enterprise. It can be both descriptive and definitional -

spanning what is and what should be. The role of an Enterprise Model is to achieve

model-driven enterprise design, analysis and operation [6, 19]. Enterprise Modelling is

an activity where an integrated and commonly shared model of an enterprise is created

[7, 12, 28]. The resulting Enterprise Model comprises several sub-models, each

MII-DS-07T-17-10 62

representing one specific aspect of the enterprise, and each modelled using an

appropriate modelling language for the task at hand. For example, the Enterprise Model

may contain processes modelled in BPMN, data modelled in ER and goals modelled in

n*. The Enterprise Model is thus developed by several enterprise engineers, and

aggregates all information about the enterprise. As a result, Enterprise Models without

homogenized underlying vocabulary suffer interoperability and integration problems

[12, 25]. An Enterprise Model can be developed for single or more different purposes.

Few Enterprise Modelling formal purposes are presented [3, 21]:

1. To capitalize enterprise knowledge and know how.

2. To illustrate relations and dependencies within the enterprise and with other enterprises, to achieve

better control and management over all aspects.

3. To provide support to business process re-engineering.

4. To get a common and complete understanding of the enterprise.

5. To improve information management across organizational and application system boundaries and

provide a common means for communication throughout the organization. Rationalize and secure

information flows.

6. To provide operative support for daily work at all levels in the enterprise from top to bottom.

7. To control, co-ordinate and monitor some parts of the enterprise.

8. To provide support for decision making.

9. To provide support the design of new parts of the enterprise.

10. To simulate processes.

Ontology is a discipline rooted in philosophy and formal logic, introduced by the

Artificial Intelligence community in the 1980s to describe real world concepts that are

independent of specific applications. Over the past two decades, knowledge

representation methodologies and technologies have subsequently been used in other

branches of computing where there is a need to represent and share contextual

knowledge independently of applications [23].

Ontology engineering is a filiation of knowledge engineering that studies the methods

and methodologies for building ontologies. In the domain of enterprise architecture,

ontology is an outline or a schema used to structure objects, their attributes and

relationships in a consistent manner. As in Enterprise Modelling, ontology can be

composed of other ontologies. The purpose of ontologies in Enterprise Modelling is to

formalize and establish the shared understanding, reuse, assimilation and dissemination

of information across all organizations and departments within an enterprise. Also, an

ontology enables integration of the various functions and processes which take place in

an enterprise [10].

Using ontologies in Enterprise Modelling offers several advantages. Ontologies ensure

clarity, consistency, and structure to a model. They promote efficient model definition

and analysis. Generic enterprise ontologies allow for reusability and automation of

components. A common ontology allows to ensure shared understanding, clearer

communication, and more effective coordination among the various divisions of an

enterprise. These lead to more efficient production and flexibility within the enterprise

[24].

3 Transformation Algorithm

The computerized IS engineering specific methods are developed based on common

requirements, which systematize the selected methodology. Computerized knowledge-

based IS engineering project management basis is CASE system knowledge-based

subsystem. CASE system’s knowledge-based subsystem’s core component is

MII-DS-07T-17-10 63

knowledge base, which essential elements are enterprise meta–model specification and

Enterprise Model for certain problem domain [4, 8, 25]. Knowledge-based subsystem

is one more active participant of IS engineering process beside analyst, whose purpose

is to verify results of IS life cycle phases [5, 9].

Knowledge-based CASE systems holding substantial components, which organize

knowledge: knowledge-based subsystem’s knowledge base, which essential elements

are enterprise meta–model specification and Enterprise Model for certain problem

domain [7, 13, 16].

Fig. 1. Knowledge-based subsystem connection to the Enterprise Model and enterprise meta–model inside CASE

tool presented as Sequence diagram

Information system design methods indicate the continuance of systems engineering

actions, i.e. how, in what order and what UML models to use in the design process and

how to fulfil the process. Association between UML models and Enterprise Model is

realized through the transformation algorithms [14, 15].

Fig. 2. UML models generation by using the transformation algorithm [22]

Enterprise Model as organization’s knowledge repository enables generate UML

models with the help of transformation algorithms. Enterprise meta-model holds

essential elements of business modelling methodologies and techniques, which ensures

a proper UML models generation process [17, 18, 20].

Presently, used CASE system’s Enterprise Models constitution is not verified by

formalized criteria. Enterprise Models have been formed in compliance with the

MII-DS-07T-17-10 64

notations. However, their composition has not been proved by the characteristics of the

specific domain area [27, 28].

In IS engineering all design models are fulfilled on the basis of the empirical expert

experience. Experts, who participate in the IS development process, do not gain enough

knowledge, and process implementation in requirements analysis and specification

phases can take a too long time. Enterprise meta–model contains essential elements of

business modelling methodologies and techniques, which insures a suitable UML

diagrams generation process [27, 28].

Fig. 3. Transformation Algorithm of EM based UML model generation process

Figure 3 presents top level transformation algorithm for Enterprise meta–model based

UML models generating process. Main steps for generating process are identifying and

selecting UML model for generating process, identifying starting elements for the

selected UML model and selecting all related elements, reflecting Enterprise Model

elements to UML model elements and generating the selected UML model [22, 27, 28].

4 UML Interaction Overview Model Transformation

UML Interaction Overview diagram determines interactions through a variant of

activity diagrams in a manner that maintains overview of the control flow. Interaction

Overview model concentrate on the overview of the flow of control where the nodes

are interactions or interaction uses. The lifelines and the messages do not perform at

this overview level. UML Interaction Overview model combines elements from activity

and interaction diagrams [22]:

─ the following elements of the activity diagrams could be used on the Interaction Overview

diagrams: initial node, flow final node, activity final node, decision node, merge node, fork node,

join node;

─ the following elements of the interaction diagrams could be used on the Interaction Overview

diagrams: interaction, interaction use, duration constraint, time constraint.

MII-DS-07T-17-10 65

Fig. 4. Transformation Algorithm of EM based UML Interaction Overview model generation process

Main steps of UML Interaction Overview model generation from Enterprise Model

transformation algorithm are: selecting Interaction Overview model for generating

process, identifying initial element, selecting element’s type for chosen model,

selecting related model elements and generating model.

Table 1 presents UML Interaction Overview model elements generated from Enterprise

Model. Frame as Interaction model element is generated from EM Actor element,

Interaction Use as Interaction model element is generated from EM Information

Activity, Initial Node, Decision Node, Merge Node, Final Node as Activity model

elements are generated from EM Business Rules elements and Decision Guard as

Activity model element is generated from EM Information Flow element.

Table 1. EM and Online Service Ordering UML Interaction Overview model elements

UML Interaction
Overview model

EM F

ra
m

e
(I

n
te

ra
ct

io
n

m
o
d
el

el

em
en

t)

In
te

ra
ct

io
n
 U

se

(I
n
te

ra
ct

io
n

m
o
d
el

el

em
en

t)

In
it

ia
l

N
o
d
e

(A

ct
iv

it
y

m
o
d
el

el

em
en

t)

D
ec

is
io

n
 N

o
d
e

(A

ct
iv

it
y

m
o
d
el

el

em
en

t)

M
er

g
e

N
o
d

e

(A
ct

iv
it

y

m
o
d
el

el

em
en

t)

F
in

al
 N

o
d
e

(A

ct
iv

it
y

m
o
d
el

el

em
en

t)

D
ec

is
io

n
 G

u
ar

d

(A
ct

iv
it

y

m
o
d
el

el

em
en

t)

Actor +

Event

Proce
ss

Material Input
Material

Output

Funct
ion

Business Rules + + + +
Information

Flow
 +

Information
Activity

 +

MII-DS-07T-17-10 66

Fig. 5. UML Interaction Overview model example: Online Service Order

Figure (Fig. 5) presents an example of UML Interaction Overview model. The

necessary elements through transformation algorithms were received from CASE tool’s

knowledge-based subsystem’s Enterprise Model, where all knowledge of subject area

is stored. In this figure it is clearly seen all necessary UML Interaction Overview model

elements generated from Enterprise Model.

5 Conclusions

Computer aided IS engineering is based on empiric and IS development life cycle stages

are fulfilled on the basis of the expert’s experience. A large part of the CASE tools

design models are generated only partially, and complete realization is possible only

non-automatic and with experts participation. Today IS engineering should be based on

knowledge. In this way, knowledge-based IS engineering computerized IS development

activities are executed using the subject area knowledge, which is stored in the

knowledge base of CASE tool repository.

In order to decrease the influence of empirical factors on IS development process, the

decision was made to use knowledge-based IS engineering approach. The main

advantage of this approach is the possibility to validate specified data stored in EM

against formal criteria, in that way decreasing the possible issues and ensuring more

effective IS development process compared to classical IS development methods.

Using ontologies in Enterprise Modelling offers several advantages. Ontologies ensure

clarity, consistency, and structure to a model. They promote efficient model definition

and analysis. Generic enterprise ontologies allow for reusability of and automation of

components. Because ontologies are schemes or outlines, the use of ontologies does not

insure proper Enterprise Model definition and analysis. Ontologies are limited by how

they are defined and fulfilled. Ontology not always includes ability to cover all of the

aspects of what is being modelled.

The paper deals with the generation process of UML models from EM options. Every

element of UML model can be generated from the EM using CASE Tool knowledge

base’s subsystem and transformation algorithms. Method of UML model generation

process from EM could implement full knowledge-based IS development cycle design

stage. This is partially established by the example of online service ordering presented

as UML Interaction Overview model elements generation.

MII-DS-07T-17-10 67

6 References

11. Alonso Julita B. (2006). Ontology-based Software Engineering, Engineering Support for

Autonomous Systems. ASLab-ICEA-R-2006-016 v 0.1 Draft of 2006-11-15.

12. Bera, P., Burton-Jones, A., Wand, Y. (2011) Guidelines for Designing Visual Ontologies to

Support Knowledge Identification. Mis Quarterly 35, 883–908

13. Brathaug T. A.&Evjen T.Å. (1996) Enterprise Modeling. SINTEF, Trondheim

14. Butleris, R., Lopata, A., Ambraziunas, M., Veitaitė, I., Masteika S. (2015) SysML and UML

models usage in knowledge based MDA process. Elektronika ir elektrotechnika. Vol 21, No 2 (2015)

pp. 50-57 Print ISSN: 1392-1215, Online ISSN: 2029-5731

15. IEEE Computer Society (2014) Guide to the Software Engineering Body of Knowledge

SWEBOK. Version 3.0. Paperback ISBN-13: 978-0-7695-5166-1

16. Gudas S. Enterprise knowledge modelling: Domains and aspects. Technological and economic

development of Economy. Baltic Journal on Sustainability 281–293, 2009

17. Gudas S., Architecture of Knowledge-Based Enterprise Management Systems: a Control View,

Proceedings of the 13th world multiconference on systemics, cybernetics and informatics

(WMSCI2009),) July 10 – 13, 2009, Orlando, Florida, USA, Vol. III, p.161-266 ISBN -10: 1-

9934272-61-2 (Volume III).ISBN -13: 978-1-9934272-61-9 (Volume III)

18. Gudas S., (2012) Informacijos sistemų inžinerijos teorijos pagrindai. Vilniaus universiteto

leidykla ISBN 978-609-459-075-7

19. Gudas s., Lopata A., (2007) Meta-Model Based Development Of Use Case Model For Business

Function. Information Technology And Control, ISSN 1392 – 124X 2007, Vol.36, No.3

20. Fadel, G., Fox, M., Gruninger, M. (1994). A Generic Enterprise Resource Ontology. In:

Proceedings of the 3rd Workshop on Enabling Technologies: Infrastructure for Collaborative

Enterprises. p. 117-128

21. Force, S. E. T. (2001). Ontology driven architectures and potential uses of the semantic web in

systems and software engineering.

22. Frederik Gailly, Sven Casteleyn, Ndejda Alkhaldi (2013) On the Symbiosis between Enterprise

Modelling and Ontology Engineering. Ghent University, Universitat Jaume I, Vrije Universiteit

Brussel, DOI: 10.1007/978-3-642-41924-9_42.

23. Lopata A. Disertacija. Veiklos modeliu grindžiamas kompiuterizuotas funkcinių vartotojo

reikalavimų specifikavimo metodas. 2004

24. Lopata, A., Veitaite, I., Gudas, S., Butleris, R. (2014) CASE Tool Component – Knowledge-

based Subsystem. UML Diagrams Generation Process. Transformations in Business & Economics,

Vol. 13, No 2B (32B) pp. 676-696 ISSN: 1648 - 4460

25. Lopata, A., Veitaite, I. (2013) UML Diagrams Generation Process by Using Knowledge-Based

Subsystem. Tarptautinė konferencija „15th International Conference on Business Information

Systems“, BIS2013 (5th Workshop on Applications of Knowledge-Based Technologies in Business

(AKTB 2013)).

26. Lopata A., Ambraziūnas M., Gudas S., Butleris R. (2012) „The Main Principles of Knowledge-

Based Information Systems Engineering“, Electronics and Electrical Engineering, Vol. 11, No 1 (25),

pp. 99-102, ISSN 2029-5731.

27. Lopata A., Ambraziūnas M., Gudas S. (2012) “Knowledge Based MDA Requirements

Specification and Validation Technique”, Transformations in Business & Economics, Vol. 11, No. 1

(25), pp. 248-261.

28. Lopata, A., Ambraziūnas, M., Gudas, S. Knowledge-based MDA requirements specification

and validation technique. Transformations in Business & Economics, 2012, 11(1(25)), 248-260. ISSN

1648-4460.

29. Mark S. Fox, Mihai Barbuceanu, Michael Gruninger, and Jinxin Lin (1998), An Organization

Ontology for Enterprise Modelling. MIT Press Cambridge, MA, USA p. 131-152, ISBN:0-262-66108-

X

30. Morkevicius A., Gudas S. (2011) “Enterprise Knowledge Based Software Requirements

Elicitation”, Information Technology and Control, Vol. 40, No 3, pp. 181-190, 1392 – 124X

31. Nadeem Ahmed Khan (2011) Transformation of Enterprise Model to Enterprise Ontology.

Master Thesis, Jonkoping, Sweden.

32. OMG UML (2012) Unified Modelling Language version 2.5. Unified Modelling//

http://www.omg.org/spec/UML/2.5/Beta2/

http://www.omg.org/spec/UML/2.5/Beta2/

MII-DS-07T-17-10 68

33. OMG ODM (2014) OMG Formal Versions of Ontology Definition Metamodel//

http://www.omg.org/spec/ODM/1.1

34. Ostie James K. (1996). An Introduction to Enterprise Modeling and Simulation

35. Perjons, E (2011) Model-Driven Process Design. Aligning Value Networks, Enterprise Goals,

Services and IT Systems. Department of Computer and Systems Sciences, Stockholm University.

Sweden by US-AB, Stockholm ISBN 978-91-7447-249-3

36. Stirna, J., Persson, A., Sandkuhl, K. (2007) Participative Enterprise Modeling: Experiences and

Recommendations. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE 2007 and WES 2007.

LNCS, vol. 4495, pp. 546–560. Springer, Heidelberg

37. Veitaitė I., Lopata A. (2015) Additional Knowledge Based MOF Architecture Layer for UML

Models Generation Process. 18th International Conference on Business Information Systems,

BIS2015 International Workshop, Series: Lecture Notes in Business Information Processing.

38. Veitaite I., Ambraziunas M., Lopata A. (2014) Enterprise Model and ISO Standards Based

Informations System’s Development Process. 16th International Conference on Business Information

Systems, BIS2014 International Workshop, Larnaca, Cyprus, May 22-23, 2014, Series: Lecture Notes

in Business Information Processing.

39. Vernadat, F. (2002) UEML: towards a unified Enterprise Modelling language. International

Journal of Production Research 40, 4309–4321

http://www.omg.org/spec/ODM/1.1

