
Vilnius University
Institute of Mathematics and

Informatics
L I T H U A N I A

INFORMATICS (09 P)

THE RESEARCH OF INTELLIGENT
METHODS FOR OPINION MINING IN

BIG DATA ARRAYS

Konstantinas Korovkinas

October 2017

Technical Report MII-DS-09P-17-19

VU Institute of Mathematics and Informatics, Akademijos str. 4, Vilnius LT-08663,
Lithuania

www.mii.lt

http://www.mii.lt

Abstract

This report follows an important problem of sentiment recognition which may influence
ones decisions or reviews about item and etc. This report contains introduction, a review
of existing techniques and problem domain, methodology of the research and experi-
mental research. A new method is introduced to improve classification performance in
sentiment analysis, by combining SVM and Naïve Bayes classification results to recog-
nize positive or negative sentiment, and test in on datasets with simple sentiments from
ordinary speech and from movie reviews. This method is evaluated on a training dataset
which consists positive and negative words, and hold-out testing dataset, as well as on
its complement with additional training data.

Keywords: sentiment analysis, machine learning algorithms, SVM, Naïve Bayes clas-
sification

MII-DS-09P-17-19 2

Contents

1 Introduction . 4
2 A review of existing techniques and problem domain . 5

2.1 Literature review . 5
2.2 Ensemble methods overview. 6

2.2.1 Boosting . 7
2.2.1.1 AdaBoost . 7
2.2.1.2 AdaBoost.M1 . 8
2.2.1.3 AdaBoost.M2 . 9

2.3 The Bagging algorithm . 10
2.3.1 Fusions Methods . 10

2.3.1.1 Weighting Methods. 11
2.3.1.2 Majority Voting . 11
2.3.1.3 Performance Weighting . 12
2.3.1.4 Distribution Summation . 12
2.3.1.5 Bayesian Combination . 13
2.3.1.6 Dempster-Shafer . 13
2.3.1.7 Vogging. 13
2.3.1.8 Entropy-Weighting . 13
2.3.1.9 Density-based Weighting . 14
2.3.1.10 DEA Weighting Method . 14
2.3.1.11 Logarithmic Opinion Pool . 14
2.3.1.12 Order Statistics . 14

2.4 Relevant machine learning algorithms . 15
2.4.1 Naïve Bayes Classification . 15
2.4.2 Support Vector Machines . 15
2.4.3 Maximum Entropy. 16
2.4.4 Random Forests . 17
2.4.5 Particle Swarm Optimization (PSO). 18

2.4.5.1 Global Best PSO . 19
2.4.5.2 Local Best PSO . 20

2.4.6 Decision Tree . 21
2.4.6.1 ID3 (Iterative Dichotomiser) . 21
2.4.6.2 C4.5 . 22
2.4.6.3 CART . 23

3 Research methodology and tools . 24
3.1 Twitter research review . 24

4 Methodology of the research . 27
4.1 Implemented method . 27
4.2 Planning a Research Experiment for implemented method . 29

5 Results . 29
6 Conclusions . 31
References . 31

MII-DS-09P-17-19 3

1 Introduction

The term opinion mining appears in a paper by Dave et al. [DLP03] that was published
in the proceedings of the 2003 WWW conference; the publication venue may explain the
popularity of the term within communities strongly associated with Web search or infor-
mation retrieval. According to Dave et al. [DLP03], the ideal opinion-mining tool would
"process a set of search results for given item, generating a list of product attributes (qual-
ity, features, etc.) and aggregating opinions about each of them (poor, mixed, good)".
Much of the subsequent research self-identified as opinion mining fits this description in
its emphasis on extracting and analyzing judgements on various aspects of given items,
However, the term has recently also been interpreted more broadly to include many dif-
ferent types of analysis of text [Liu07, PL+08].

The history of the phrase sentiment analysis parallels that of "opinion mining" in
certain respects. The term "sentiment" used in reference to the automatic analysis of
evaluative text and tracking of the predictive judgments therein appears in 2001 papers
by Das and Chen [DC01] and Tong [Ton01], due to these authors’ interest in analyzing
market sentiment. It subsequently occurred within 2002 papers by Turney [Tur02] and
Pang et al. [PLV02], which were published in the proceedings of the annual meeting of
the Association for Computational Linguistics (ACL) and the annual conference on Em-
pirical Methods in Natural Language Processing (EMNLP). Moreover, Nasukawa and
Yi [NY03] entitled their 2003 paper, "Sentiment analysis: Capturing favorability using
natural language processing", and a paper in the same year by Yi et al. [YNBN03] was
named "Sentiment Analyzer: Extracting sentiments about a given topic using natural
language processing techniques". These events together may explain the popularity of
"sentiment analysis" among communities self-identified as focused on NLP. A sizeable
number of papers mentioning "sentiment analysis" focus on the specific application of
classifying reviews as to their polarity (either positive or negative), a fact that appears to
have caused some authors to suggest that the phrase refers specifically to this narrowly
defined task. However, nowadays many construe the term more broadly to mean the
computational treatment of opinion, sentiment, and subjectivity in text [PL+08].

Sentiment analysis, also called opinion mining, is the field of study that analyzes peo-
ple’s opinions, sentiments, appraisals, attitudes, and emotions toward entities and their
attributes expressed in written text. The entities can be products,services, organizations,
individuals, events, issues, or topics. The field represents a large problem space [Liu15].

Sentiment analysis research has been mainly carried out at three levels of granularity:
document level, sentence level, and aspect level [Liu15]. This topic is considered as very
challenging – although a lot of work has been done in this field, accuracy is still rather
average due to comments, slang, smiles, sarcasm and etc.

MII-DS-09P-17-19 4

2 A review of existing techniques and problem domain

Nowadays the sentiment analysis is one of the most research area. Author [Liu15] seper-
ate the several reasons for it.

First, it has a wide arrange of applications, almost in every domain. The industry
surrounding sentiment analysis has also flourished due to the proliferation of commercial
applications. This provides a strong motivation for research [Liu15].

Second, it offers many challenging research problems, which had never been studied
before. This book will systematically define and discuss these problems, and describe the
current state-of-the-art techniques for solving them [Liu15].

Third, for the first time in human history, we now have a huge volume of opinionated
data in the social media on the Web. Without this data, a lot of research would not have
been possible [Liu15].

In this part are presented a short review of existing researches and techniques, which
are done in this area.

2.1 Literature review

Bing Liu [Liu15], Tang et al. [TTC09] expressed an overview in sentiment analysis in
which analyzed the strong points and the weak points of sentiment analysis and they
gave many research ways of sentiment analysis. Pang et al. [PLV02], Dave et al. [DLP03]
think that sentiment classification can be regarded as a binary-classification task. Dave et
al. [DLP03] use structured reviews for testing and training, identifying appropriate fea-
tures and scoring methods from information retrieval for determining whether reviews
are positive or negative.

Pang et al. [PL04, PL+08] compared many classifiers on movie reviews and gave a
vision of insight and comprehension in sentiment analysis and opinion mining. Au-
thors also used star rating as a feature for classification [LN15]. In another paper Pang et
al. [PLV02] evaluated the performance of Naïve Bayes, maximum entropy, and support
vector machines in the specific domain of movie reviews, obtaining accuracy slightly
above 80%. Go et al. [GBH09] later obtained similar results with unigrams by introduc-
ing a more novel approach to automatically classify the sentiment of Twitter messages as
either positive or negative with respect to a query term. SVM proved to perform best.

Davidov et al. [DTR10] stated that SVM and Naïve Bayes are best techniques to clas-
sify the data and can be regarded as the baseline learning methods, by applying them for
analysis based on the Twitter user defined hashtag in tweets. The features were obtained
after preprocessing step using the ngrams, punctuation, single words and pattern as dif-
ferent feature types and then combined in to a single feature vector for the classification.
K-nearest neighbor strategy was used to assign labels in each training and testing data
set.

The ensemble idea in supervised learning has been investigated since the late sev-
enties. Tukey [Tuk77] suggests combining two linear regression models. The first linear

MII-DS-09P-17-19 5

regression model is fitted to the original data and the second linear model to the residu-
als. Two years later, Dasarathy, Sheela [DS79] suggested to partition the input space using
two or more classifiers. The main progress in the field was achieved during the Nineties.
Hansen, Salamon [HS90] suggested an ensemble of similarly configured neural networks
to improve the predictive performance of a single one. At the same time Schapire [Sch90]
laid the foundations for the award winning AdaBoost Freund, Schapire [FS+96] algo-
rithm by showing that a strong classifier in the probably approximately correct (PAC)
sense can be generated by combining “weak” classifiers (that is, simple classifiers whose
classification performance is only slightly better than random classification). Ensemble
methods can also be used for improving the quality and robustness of unsupervised
tasks. Ensemble methods can be also used for improving the quality and robustness
of clustering algorithms [DWH03], [Rok10a].

Xia et al. [XZL11] used an ensemble framework for sentiment classification. En-
semble framework is obtained by combining various feature sets and classification tech-
niques. In that work, they used two types of feature sets and three base classifiers to
form the ensemble framework. Two types of feature sets are created using Part-of-speech
information and Word-relations. Naïve Bayes, Maximum Entropy and Support Vector
Machines are selected as base classifiers. They applied different ensemble methods like
Fixed combination, Weighted combination and Meta-classifier combination for sentiment
classification and obtained better accuracy [NR13].

2.2 Ensemble methods overview

The goal of ensemble systems is to create several classifiers with relatively fixed (or sim-
ilar) bias and then combining their outputs, say by averaging, to reduce the variance
[ZM12].

Figure 1: Variability reduction using ensemble systems. Source [ZM12]

MII-DS-09P-17-19 6

The reduction of variability can be thought of as reducing high-frequency (high-
variance) noise using a moving average filter, where each sample of the signal is averaged
by a neighbor of samples around it. Assuming that noise in each sample is independent,
the noise component is averaged out, whereas the information content that is common
to all segments of the signal is unaffected by the averaging operation. Increasing classi-
fier accuracy using an ensemble of classifiers works exactly the same way: assuming that
classifiers make different errors on each sample, but generally agree on their correct clas-
sifications, averaging the classifier outputs reduces the error by averaging out the error
components [ZM12].

2.2.1 Boosting

Boosting (also known as arcing — Adaptive Resampling and Combining) is a general
method for improving the performance of a weak learner (such as classification rules or
decision trees). The method works by repeatedly running a weak learner (such as clas-
sification rules or decision trees), on various distributed training data. The classifiers
produced by the weak learners are then combined into a single composite strong classi-
fier in order to achieve a higher accuracy than the weak learner’s classifiers would have
had [Rok10a].

2.2.1.1 AdaBoost

AdaBoost (Adaptive Boosting), which was first introduced in [FS+96], is a popular en-
semble algorithm that improves the simple boosting algorithm via an iterative process.
The main idea behind this algorithm is to give more focus to patterns that are harder to
classify. The amount of focus is quantified by a weight that is assigned to every pattern in
the training set. Initially, the same weight is assigned to all the patterns. In each iteration
the weights of all misclassified instances are increased while the weights of correctly clas-
sified instances are decreased. As a consequence, the weak learner is forced to focus on
the difficult instances of the training set by performing additional iterations and creating
more classifiers. Furthermore, a weight is assigned to every individual classifier. This
weight measures the overall accuracy of the classifier and is a function of the total weight
of the correctly classified patterns. Thus, higher weights are given to more accurate clas-
sifiers. These weights are used for the classification of new patterns. Mathematically, it
can be written as [Rok10a]:

H(x) = sign

(
T∑
t=1

αt ·Mt(x)

)
(1)

MII-DS-09P-17-19 7

2.2.1.2 AdaBoost.M1

Algorithm AdaBoost.M1
Input: sequence of m examples ((x1, y1), . . . , (xm, ym)) with labels yi ∈ Y = {1, . . . , k}

weak learning algorithm WeakLearn
integer T specifying number of iterations

Initialize D1(i) = 1/m for all i.
Do for t = 1, 2, . . . , T

1. Call WeakLearn, providing it with the distribution Dt

2. Get back a hypothesis ht : X → Y .

3. Calculate the error of ht : εt =
∑

i:ht(xi)6=yi

·Dt(i). If εt > 1/2, then T = t− 1 and abort

loop.

4. Set βt = εt/(1− εt).

5. Update distribution Dt : Dt+1(i) = Dt(i)
Zt
×

βt if ht(xi) = yi

1 otherwise
where Zt is a normalization constant (chosen so that Dt+1 will be a distribution).

Output the final hypothesis:

hfin(x) = argmax
y∈Y

∑
t:ht(x)=y

log
1

βt

Figure 2: The algorithm AdaBoost.M1 [FS+96]

The boosting algorithm takes as input a training set of m examples S =

((x1, y1), . . . , (xm, ym)) where xi is an instance drawn from some space X and represented
in some manner (typically, a vector of attribute values), and yi ∈ Y is the class label as-
sociated with xi. In addition, the boosting algorithm has access to another unspecified
learning algorithm, called the weak learning algorithm, which is denoted generically as
WeakLearn. The boosting algorithm calls WeakLearn repeatedly in a series of rounds.
On round t, the booster provides WeakLearn with a distribution Dt over the training
set S. In response, WeakLearn computes a classifier or hypothesis ht : X → Y which
should misclassify a non trivial fraction of the training examples, relative to Dt. That is,
the weak learner’s goal is to find a hypothesis ht which minimizes the (training) error
εt = Pri∼Dt [ht(xi) 6= yi]. Note that this error is measured with respect to the distribution
Dt that was provided to the weak learner. This process continues for T rounds, and, at
last, the booster combines the weak hypotheses h1, . . . , hT into a single final hypothesis
hfin [FS+96].

MII-DS-09P-17-19 8

2.2.1.3 AdaBoost.M2

Algorithm AdaBoost.M2
Input: sequence of m examples ((x1, y1), . . . , (xm, ym)) with labels yi ∈ Y = {1, . . . , k}

weak learning algorithm WeakLearn
integer T specifying number of iterations

Let B = {(i, y) : i ∈ {1, . . . ,m}, y 6= yi}
Initialize D1(i, y) = 1/|B| for (i, y) ∈ B.
Do for t = 1, 2, . . . , T

1. Call WeakLearn, providing it with mislabel distribution Dt

2. Get back a hypothesis ht : X × Y → [0, 1].

3. Calculate the pseudo-loss of ht : εt = 1
2

∑
(i,y)∈B

Dt(i, y)(1− ht(xi, yi) + ht(xi, y)).

4. Set βt = εt/(1− εt).

5. Update Dt : Dt+1(i, y) = Dt(i,y)
Zt
· β(1/2)(1+ht(xi,yi)−ht(xi,y))t

where Zt is a normalization constant (chosen so that Dt+1 will be a distribution).

Output the hypothesis:

hfin(x) = argmax
y∈Y

T∑
t=1

(
log

1

βt

)
ht(x, y)

.

Figure 3: The algorithm AdaBoost.M2 [FS+96]

AdaBoost.M2, is based on these ideas, achieves boosting if each weak hypothesis has
pseudo-loss slightly better than random guessing. On each round t of boosting, Ad-
aBoost.M2 supplies the weak learner with a mislabel distribution Dt. In response, the
weak learner computes a hypothesis ht of the form ht : X ∈ Y → [0, 1]. The weak
learner’s goal is to find a weak hypothesis ht with small pseudo-loss. Thus, standard
"off-the-shelf" learning algorithms may need some modification to be used in this man-
ner, although this modification is often straightforward. After receiving ht, the mislabel
distribution is updated using a rule similar to the one used in AdaBoost.M1. The final
hypothesis hfin outputs, for a given instance x, the label y that maximizes a weighted
average of the weak hypothesis values ht(x, y) [FS+96].

MII-DS-09P-17-19 9

2.3 The Bagging algorithm

The Bagging algorithm
Input: training set S, Inducer I, integer T (number of bootstrap samples).

1. for i = 1 to T{

2. S′ = bootstrap sample from S (i.i.d sample with replacement).

3. Ci = I(S′)

4. }

5.
C∗(x) = argmax

y∈Y

∑
i:Ci(x)=y

1 (the most often predicted label y)

Output classifier C∗.

Figure 4: The Baggign algorithm [BK99]

The Bagging algorithm (Bootstrap aggregating) by Breiman [Bre96] votes classifiers gen-
erated by different bootstrap samples (replicates). A Bootstrap sample [ET93] is generated
by uniformly sampling m instances from the training set with replacement. T bootstrap
samplesB1, B2, . . . , BT are generated and a classifier Ci is built from each bootstrap sam-
ple Bj . A final classifier C∗ is built from C1, C2, . . . , CT whose output is the class pre-
dicted most often by its sub-classifiers, with ties broken arbitrarily.
For a given bootstrap sample, an instance in the training set has probability 1−(1−1/m)m

of being selected at least once in the m times instances are randomly selected from the
training set. For large m, this is about 1− 1/e = 63.2%, which means that each bootstrap
sample contains only about 63.2% unique instances from the training set. This perturba-
tion causes different classifiers to be built if the inducer is unstable (e.g., neural networks,
decision trees) [B+96] and the performance can improve if the induced classifiers are
good and not correlated; however, Bagging may slightly degrade the performance of sta-
ble algorithms (e.g., k-nearest neighbor) because effectively smaller training sets are used
for training each classifier [Bre96, BK99].

2.3.1 Fusions Methods

Fusing methods aim at providing the classification by combining the out-puts of several
classifiers. We assume that the output of each classifier i is a k-long vector pi,1, . . . , pi,k.
The value pi,j represents the support that instance x belongs to class j according to the

MII-DS-09P-17-19 10

classifier i. For the sake of simplicity, it is also assumed that
k∑
j=1

pi,j = 1. If we are dealing

with a crisp classifier i, which explicitly assigns the instance x to a certain class l, then it
can still be converted to k-long vector pi,1, . . . , pi,k such that pi,l = 1 and pi,j = 0∀j 6= l.
Fusions methods can be furthered partitioned into weighting methodsand meta-learning
methods [Rok10b].

2.3.1.1 Weighting Methods

The base members classification are combined using weights that are assigned to each
member. The member’s weight indicates its effect on the final classification. The as-
signed weight can be fixed or dynamically determined for the specific instance to be
classified. The weighting methods are best suited for problems where the individual
classifiers perform the same task and have comparable success or when we would like to
avoid problems associated with added learning (such as overfitting or long training time)
[Rok10b].

2.3.1.2 Majority Voting

In this combining scheme, a classification of an unlabeled instance is per-formed accord-
ing to the class that obtains the highest number of votes. This method is also known as
the plurality vote (PV)or the basic ensemble method (BEM). This approach has frequently
been used as a combining method for comparing newly proposed methods.
Mathematically majority voting can be written as:

class(x) = arg max
ci∈dom(y)

(∑
g(yk(x), ci)

)
(2)

where yk(x) is the classification of the k’th classifier and g(y,c) is an indicator function
defined as:

g(y, c) =

1 y = c

0 y 6= c
(3)

Note that in case of a probabilistic classifier, the crisp classification yk(x) is usually ob-
tained as follows:

yk(x) = arg max
ci∈dom(y)

P̂Mk
(y = ci|x) (4)

where Mk denotes classifier k and P̂Mk
(y = C|x) denotes the probability of y obtaining

the value c given an instance x [Rok10b].

MII-DS-09P-17-19 11

2.3.1.3 Performance Weighting

The weight of each classifier can be set proportional to its accuracy performance on a
validation set [OS96].

wi =
(αi)
T∑
j=1

(αj)

(5)

where αi is a performance evaluation of classifier i on a validation set. Once the weights
for each classifier have been computed, we select the class which receive the highest score:

class(x) = arg max
ci∈dom(y)

(∑
k

αig(yk(x), ci)

)
(6)

Since the weights are normalized and are summed up to 1, it possible to interpret the sum
in last equation as the probability that xi is classified into cj [Rok10b].
Moreno-Seco et al. [MSIDLM06] examined several variations of performance weighting
methods:
Re-scaled weighted vote The idea is to weight values proportionally to some given ratio
N/M as following:

αk = max

{
1− M · ek

N · (M − 1)
, 0

}
(7)

where ei is the number of misclassifications made by classifier i [Rok10b].

Best-worst weighted vote The idea is that the best and the worst classifiers obtain
the weight of 1 and 0 respectively. The rest of classifiers are rated linearly between these
extremes [Rok10b]:

αi = 1−
ei −min

i
(ei)

max
i

(ei)−min
i

(ei)
(8)

Quadratic best-worst weighted vote In order to give additional weight to the classi-
fications provided by the most accurate classifiers, the values obtained by the best-worst
weighted vote approach are squared [Rok10b]:

αi =

 max
i

(ei)− ei
max
i

(ei)−min
i

(ei)

2

(9)

2.3.1.4 Distribution Summation

The idea of the distribution summation combining method is to sum up the conditional
probability vector obtained from each classifier [CB91]. The selected class is chosen
according to the highest value in the total vector. Mathematically, it can be written
as [Rok10b]:

Class(x) = arg max
ci∈dom(y)

∑
k

P̂Mk
(y = ci|x) (10)

MII-DS-09P-17-19 12

2.3.1.5 Bayesian Combination

In the Bayesian combination method the weight associated with each classifier is the pos-
terior probability of the classifier given the training set [Bun90].

Class(x) = arg max
ci∈dom(y)

∑
k

P (Mk|S) · P̂Mk
(y = ci|x) (11)

where P (Mk|S) denotes the probability that the classifier Mk is correct given the training
set S. The estimation of P (Mk|S) depends on the classifier’s representation [Rok10b].

2.3.1.6 Dempster-Shafer

The idea of using the Dempster–Shafer theory of evidence [BS+84] for combining clas-
sifiers has been suggested in [Shl90]. This method uses the notion of basic probability
assignment defined for a certain class ci given the instance x:

bpa(ci, x) = 1−
∏
k

(
1− P̂Mk

(y = ci|x)
)

(12)

Consequently, the selected class is the one that maximizes the value of the belief function:

Bel(ci, x) =
1

A
· bpa(ci, x)

1− bpa(ci, x)
(13)

where A is a normalization factor defined as [Rok10b]:

A =
∑

∀ci∈dom(y)

bpa(ci, x)

1− bpa(ci, x)
+ 1 (14)

2.3.1.7 Vogging

The idea of behind the vogging approach (Variance Optimized Bagging) is to optimize
a linear combination of base-classifiers so as to aggressively reduce variance while at-
tempting to preserve a prescribed accuracy [DEYM02]. For this purpose, Derbeko et
al. [DEYM02] implemented the Markowitz Mean-Variance Portfolio Theory that is used
for generating low variance portfolios of financial assets [Rok10b].

2.3.1.8 Entropy-Weighting

The idea in this combining method is to give each classifier a weight that is inversely
proportional to the entropy of its classification vector.

Class(x) = arg max
ci∈dom(y)

∑
k:ci= arg max

cj∈dom(y)
P̂Mk

(y = cj |x)

E(Mk, x) (15)

MII-DS-09P-17-19 13

where [Rok10b]:

E(Mk, x) = −
∑
cj

P̂Mk
(y = cj |x) log

(
P̂Mk

(y = cj |x)
)

(16)

2.3.1.9 Density-based Weighting

If the various classifiers were trained using datasets obtained from different regions of
the instance space, it might be useful to weight the classifiers according to the probability
of sampling x by classifier Mk, namely:

Class(x) = arg max
ci∈dom(y)

∑
k:ci= arg max

cj∈dom(y)
P̂Mk

(y = cj |x)

P̂Mk
(x) (17)

The estimation of P̂Mk
(x) depends on the classifier representation and cannot always be

estimated [Rok10b].

2.3.1.10 DEA Weighting Method

Recently there has been attempts to use the data envelop analysis (DEA) methodology
Charnes et al [CCR78] in order to assign weights to different classifiers [SC01]. These
researchers argue that the weights should not be specified according to a single perfor-
mance measure, but should be based on several performance measures. Because there is
a trade-off among the various performance measures, the DEA is employed in order to
figure out the set of efficient classifiers. In addition, DEA provides in efficient classifiers
with the benchmarking point [Rok10b].

2.3.1.11 Logarithmic Opinion Pool

According to the logarithmic opinion pool [Han00] the selection of the preferred class is
performed according to:

Class(x) = arg max
cj∈dom(y)

e
∑

k=αk log(P̂Mk
(y=cj |x)) (18)

where αk denotes the weight of the k-th classifier, such that [Rok10b]:

αk ≥ 0;
∑

αk = 1 (19)

2.3.1.12 Order Statistics

Order statistics can be used to combine classifiers [TG01]. These combiners offer the sim-
plicity of a simple weighted combination method together with the generality of meta-
combination methods. The robustness of this method is helpful when there are significant
variations among classifiers in some part of the instance space [Rok10b].

MII-DS-09P-17-19 14

2.4 Relevant machine learning algorithms

2.4.1 Naïve Bayes Classification

A Naïve Bayes classifier is a simple probabilistic classifier based on Bayes’ theorem and is
particularly suited when the dimensionality of the inputs are high. In text classification,
the given document is assigned a class

C∗ = argmax
c

p(c|d)

Its underlying probability model can be described as an "independent feature model".
The Naïve Bayes (NB) classifier uses the Bayes’ rule Eq. (20),

p(c|d) =
p(c)p(d, c)

p(d)
(20)

Where, p(d) plays no role in selectingC∗. To estimate the term p(d|c), Naïve Bayes decom-
poses it by assuming the fi’s are conditionally independent given d’s class as in Eq.(21),

pNB (c, d) =

p(c)

(
m∏
i=1

p(fi, c)
ni(d)

)
p(d)

(21)

Where, m is the no of features and fi is the feature vector. Consider a training method
consisting of a relative-frequency estimation p(c) and p (fi|c) [PLV02].

2.4.2 Support Vector Machines

Support vector machines were introduced in [BGV92] and basically attempt to find the
best possible surface to separate positive and negative training samples. Support Vector
Machines (SVMs) are supervised learning methods used for classification.

Given training vectors xi ∈ Rn, i = 1, . . . , l, in two classes, and an indicator vector
y ∈ Rl such that yi ∈ {1,-1}, C − SV C [BGV92] solves the following primal optimization
problem [CL11].

min
w,b,ξ

1

2
wTw + C

l∑
i=1

ξi (22)

subject to yi (wTφ(xi) + b) ≥ 1 - ξi, ξi ≥ 0, i = 1, . . . , l
where φ(xi) maps xi into a higher-dimensional space and C > 0 is the regularization

parameter. Due to the possible high dimensionality of the vector variable w, usually we
solve the following dual problem.

min
α

1

2
αTQα− eTα (23)

subject to yTα = 0, 0 ≤ α ≤ C, i = 1, . . . , l
where e = [1, ..., l]T is the vector of all ones, Q is an l by l positive semidefinite matrix,

MII-DS-09P-17-19 15

Qij ≡ yiyjK(xi, xj), and K(xi, xj) ≡ ϕ(xi)
Tϕ(xj) is the kernel function.

After problem (2.5) is solved, using the primal-dual relationship, the optimal w satis-
fies.

w =
l∑

i=1

yiαiφ(xi) (24)

and the decision function is [CL11]

sgn(wTφ(x) + b) = sgn

(
l∑

i=1

yiαiK(xi, x) + b

)
(25)

2.4.3 Maximum Entropy

Maximum entropy classification is an alternative technique which has proven effective in
a number of natural language processing applications (Berger et al. [BPP96]). Nigam et al.
[NLM99] show that it sometimes, but not always, outperforms Naive Bayes at standard
text classification. Its estimate of P(c|d) takes the following exponential form:

PME(c|d) :=
1

Z(d)
exp

(∑
i

λi,cFi,c(d, c)

)
(26)

where Z(d) is a normalization function. Fi,c is a feature/class function for feature fi and
class c, defined as follows:

Fi,c(d, c
′) :=

1, ni(d) > 0 and c′ = c

0 otherwise.
(27)

For instance, a particular feature/class function might fire if and only if the bigram "still
hate" appears and the document’s sentiment is hypothesized to be negative. Importantly,
unlike Naive Bayes, Maximum Entropy makes no assumptions about the relationships
between features, and so might potentially perform better when conditional indepen-
dence assumptions are not met [PLV02].
The λi,c’s are feature-weight parameters; inspection of the definition of PME shows that a
large λi,c means that fi is considered a strong indicator for class c. The parameter values
are set so as to maximize the entropy of the induced distribution (hence the classifier’s
name) subject to the constraint that the expected values of the feature/class functions
with respect to the model are equal to their expected values with respect to the training
data: the underlying philosophy is that we should choose the model making the fewest
assumptions about the data while still remaining consistent with it, which makes intu-
itive sense. Authors [PLV02] use ten iterations of the improved iterative scaling algo-
rithm (Della Pietra et al. [DPDPL97]) for parameter training (this was a sufficient number
of iterations for convergence of training-data accuracy), together with a Gaussian prior
to prevent overfitting (Chen and Rosenfeld, [CR00]) [PLV02].

MII-DS-09P-17-19 16

2.4.4 Random Forests

Random Forests were introduced by Leo Breiman [Bre01] who was inspired by earlier
work by Amit and Geman [AG97].
Random Forest is a tree-based ensemble with each tree depending on a collection of ran-
dom variables. More formally, for a p-dimensional random vector X = (X1, . . . , Xp)

T

representing the real-valued input or predictor variables and a random variable Y repre-
senting the real-valued response, we assume an unknown joint distribution PXY (X,Y).
The goal is to find a prediction function f(X) for predicting Y. The prediction function is
determined by a loss function L(Y, f(X)) and defined to minimize the expected value of
the loss

EXY (L(Y, f(X))) (28)

where the subscripts denote expectation with respect to the joint distribution of X and Y
[CCS12].
Intuitively, L(Y, f(X)) is a measure of how close f(X) is to Y; it penalizes values of f(X) that
are a long way from Y. Typical choices of L are squared error loss L(Y, f(X)) = (Y −f(X))2

for regression and zero-one loss for classification:

L(Y, f(X)) = I(Y 6= f(X)) =

0 if Y = f(X)

1 otherwise.
(29)

It turns out that minimizingEXY (L(Y, f(X))) for squared error loss gives the conditional
expectation

f(x) = E(Y |X = x) (30)

otherwise known as the regression function. In the classification situation, if the set of
possible values of Y is denoted byY , minimizingEXY (L(Y, f(X))) for zero-one loss gives

f(x) = argmax
y∈Y

P (Y = y|X = x) (31)

otherwise known as the Bayes rule [CCS12]. Ensembles construct f in terms of a collection
of so-called "base learners" h1(x), . . . , hJ(x) and these base learners are combined to give
the "ensemble predictor" f(x). In regression, the base learners are averaged

f(x) =
1

J

J∑
j=1

hj(x) (32)

while in classification, f(x) is the most frequently predicted class ("voting")

f(x) = argmax
y∈Y

J∑
j=1

I(y = hj(x)) (33)

MII-DS-09P-17-19 17

In Random Forests the jth base learner is a tree denoted hj(X,Θj), where Θj is a collection
of random variables and the Θj ’s are independent for j = 1, . . . , J [CCS12].

Algorithm Random Forests
Let D = (x1, y1), . . . , (xN , yN) denote the training data, with xi = (xi,1, . . . , xi,p)

T . For
j = 1 to J:

1. Take a bootstrap sample Dj of size N from Dj .

2. Using the bootstrap sample Dj as the training data, fit a tree using binary recursive
partitioning:

(a) Start with all observations in a single node.

(b) Repeat the following steps recursively for each unsplit node until the stopping
criterion is met:

i. Select m predictors at random from the p available predictors.

ii. Find the best binary split among all binary splits on the m predictors from
step i.

iii. Split the node into two descendant nodes using the split from step ii.

To make a prediction at a new point x,

• f̂(x) = 1
J

J∑
j=1

ĥj(x) for regression

• f̂(x) = argmax
y

J∑
j=1

I(ĥj(x) = y) for classification

where ĥj(x) is the prediction of the response variable at x using the jth tree.

Figure 5: The algorithm Random Forests [CCS12]

2.4.5 Particle Swarm Optimization (PSO)

A PSO algorithm maintains a swarm of particles, where each particle represents a poten-
tial solution. In analogy with evolutionary computation paradigms, a swarm is similar to
a population, while a particle is similar to an individual. In simple terms, the particles
are "flown" through a multidimensional search space, where the position of each particle
is adjusted according to its own experience and that of its neighbors.
Let xi(t) denote the position of particle i in the search space at time step t; unless oth-
erwise stated, t denotes discrete time steps. The position of the particle is changed by
adding a velocity, vi(t), to the current position, i.e.

xi(t+ 1) = xi(t) + vi(t+ 1) (34)

MII-DS-09P-17-19 18

with xi(0) ∼ U(xmin, xmax).
It is the velocity vector that drives the optimization process, and reflects both the expe-
riential knowledge of the particle and socially exchanged information from the particle’s
neighborhood. The experiential knowledge of a particle is generally referred to as the
cognitive component, which is proportional to the distance of the particle from its own
best position (referred to as the particle’s personal best position) found since the first
time step. The socially exchanged information is referred to as the social component of
the velocity equation [Eng07].

2.4.5.1 Global Best PSO

For gbest PSO, the velocity of particle i is calculated as.

vij(t+ 1) = vij(t) + c1r1j(t) [yij(t)− xij(t)] + c2r2j(t)
[
ŷj(t)− xij(t)

]
(35)

where vij(t) is the velocity of particle i in dimension j = 1, . . . , nx at time step t, xij(t) is
the position of particle i in dimension j at time step t, c1 and c2 are positive acceleration
constants used to scale the contribution of the cognitive and social components respec-
tively, and r1j(t), r2j(t) ∼ U(0, 1) are random values in the range [0, 1], sampled from
a uniform distribution. These random values introduce a stochastic element to the algo-
rithm.
The personal best position, yi, associated with particle i is the best position the particle
has visited since the first time step. Considering minimization problems, the personal
best position at the next time step, t+ 1, is calculated as [Eng07].

yi(t+ 1) =

yi(t) if f(xi(t+ 1)) ≥ f(yi(t))

xi(t+ 1) if f(xi(t+ 1)) < f(yi(t))
(36)

where f : Rnx → R is the fitness function. As with EAs, the fitness function measures how
close the corresponding solution is to the optimum, i.e. the fitness function quantifies the
performance, or quality, of a particle (or solution) [Eng07].
The global best position, ŷ(t), at time step t, is defined as

ŷ(t) ∈ {y0(t), . . . , yns(t)}|f(ŷ(t)) = min{f(y0(t)), . . . , f(yns(t))} (37)

where ns is the total number of particles in the swarm. ŷ is the best position discovered
by any of the particles so far – it is usually calculated as the best personal best position.
The global best position can also be selected from the particles of the current swarm, in
which case [ZCL+98, Eng07]

ŷ(t) = min{f(x0(t)), . . . , f(xns(t))} (38)

MII-DS-09P-17-19 19

gbest PSO algorithm
Create and initialize an nx-dimensional swarm;
repeat

for each particle i = 1, . . . , ns do
//set the personal best position
if f(xi) < f(yi) then
yi = xi;

end
//set the global best position
if f(yi) < f (ŷ) then

ŷ = yi;
end

end
for each particle i = 1, . . . , ns do

update the velocity using equation (2.28);
update the position using equation (2.27);

end
until stopping condition is true;

Figure 6: gbest PSO algorithm [Eng07]

2.4.5.2 Local Best PSO

The velocity is calculated as

vij(t+ 1) = vij(t) + c1r1j(t) [yij(t)− xij(t)] + c2r2j(t)
[
ŷij(t)− xij(t)

]
(39)

where ŷij is the best position, found by the neighborhood of particle i in dimension j.
The local best particle position, ŷi, i.e. the best position found in the neighborhood Ni, is
defined as

ŷ(t+1) ∈ {Ni|f(ŷ(t+1)) = min{f(x)}, ∀x ∈ Ni} (40)

with the neighborhood defined as

Ni = {yi−nNi
(t), yi−nNi

+1(t), . . . , yi−1(t), yi(t), yi+1(t), . . . , yi+nNi
(t)} (41)

for neighborhoods of size nNi . The local best position will also be referred to as the
neighborhood best position.
Particles within a neighborhood have no relationship to each other. Selection of neigh-
borhoods is done based on particle indices. However, strategies have been developed
where neighborhoods are formed based on spatial similarity [Eng07].

MII-DS-09P-17-19 20

lbest PSO algorithm
Create and initialize an nx-dimensional swarm;
repeat

for each particle i = 1, . . . , ns do
//set the personal best position
if f(xi) < f(yi) then
yi = xi;

end
//set the neighborhood best position
if f(yi) < f (ŷi) then

ŷ = yi;
end

end
for each particle i = 1, . . . , ns do

update the velocity using equation (2.32);
update the position using equation (2.27);

end
until stopping condition is true;

Figure 7: lbest PSO algorithm [Eng07]

2.4.6 Decision Tree

Decision tree induction is the learning of decision trees from class-labeled training tuples.
A decision tree is a flowchart-like tree structure, where each internal node (nonleaf node)
denotes a test on an attribute, each branch represents an outcome of the test, and each
leaf node (or terminal node) holds a class label. The topmost node in a tree is the root
node [HPK11].

2.4.6.1 ID3 (Iterative Dichotomiser)

ID3 a decision tree algorithm is developed by J. Ross Quinlan, a researcher in machine
learning. ID3 uses information gain as its attribute selection measure. This measure is
based on pioneering work by Claude Shannon on information theory, which studied the
value or "information content" of messages. Let node N represent or hold the tuples of
partition D. The attribute with the highest information gain is chosen as the splitting at-
tribute for node N. This attribute minimizes the information needed to classify the tuples
in the resulting partitions and reflects the least randomness or "impurity" in these par-
titions. Such an approach minimizes the expected number of tests needed to classify a
given tuple and guarantees that a simple (but not necessarily the simplest) tree is found
[HPK11].

MII-DS-09P-17-19 21

The expected information needed to classify a tuple in D is given by

Info(D) = −
m∑
i=1

pi log2(pi) (42)

where pi is the nonzero probability that an arbitrary tuple in D belongs to class Ci and is
estimated by |Ci, D|/|D|. A log function to the base 2 is used, because the information is
encoded in bits. Info(D) is just the average amount of information needed to identify the
class label of a tuple in D [HPK11].
Now, suppose we were to partition the tuples in D on some attribute A having ν distinct
values, {a1, a2, ..., aν}, as observed from the training data. If A is discrete-valued, these
values correspond directly to the ν outcomes of a test on A. Attribute A can be used to
split D into ν partitions or subsets, {D1, D2, ..., Dν}, where Dj contains those tuples in
D that have outcome aj of A. These partitions would correspond to the branches grown
from node N. Ideally, we would like this partitioning to produce an exact classification
of the tuples. That is, we would like for each partition to be pure. However, it is quite
likely that the partitions will be impure (e.g., where a partition may contain a collection
of tuples from different classes rather than from a single class).
How much more information would we still need (after the partitioning) to arrive at an
exact classification? This amount is measured by

InfoA(D) =

ν∑
j=1

|Dj |
|D|
× Info(Di) (43)

The term |Dj|
|D| acts as the weight of thejth partition. InfoA(D) is the expected informa-

tion required to classify a tuple from D based on the partitioning by A. The smaller the
expected information (still) required, the greater the purity of the partitions.
Information gain is defined as the difference between the original information require-
ment (i.e., based on just the proportion of classes) and the new requirement (i.e., obtained
after partitioning on A). That is [HPK11],

Gain(A) = Info(D)− InfoA(D) (44)

2.4.6.2 C4.5

C4.5 also presented by Quilan. C4.5, a successor of ID3, uses an extension to informa-
tion gain known as gain ratio, which attempts to overcome this bias. It applies a kind of
normalization to information gain using a "split information" value defined analogously
with Info(D) as

SplitInfoA(D) = −
ν∑
j=1

|Dj |
|D|
× log2

(
|Dj |
|D|

)
(45)

This value represents the potential information generated by splitting the training data
set, D, into ν partitions, corresponding to the ν outcomes of a test on attribute A. Note

MII-DS-09P-17-19 22

that, for each outcome, it considers the number of tuples having that outcome with re-
spect to the total number of tuples in D. It differs from information gain, which measures
the information with respect to classification that is acquired based on the same partition-
ing. The gain ratio is defined as [HPK11]

GainRatio(A) =
Gain(A)

SplitInfoAD
(46)

2.4.6.3 CART

CART - Classification and Regression Trees. The Gini index is used in CART. Using the
notation previously described, the Gini index measures the impurity of D, a data partition
or set of training tuples, as

Gini(D) = 1−
m∑
i=1

p2i (47)

where pi is the probability that a tuple in D belongs to class Ci and is estimated by
|Ci,D|/|D|. The sum is computed over m classes. [HPK11]
The Gini index considers a binary split for each attribute. Let’s first consider the case
where A is a discrete-valued attribute having v distinct values, {a1, a2, . . . , aν}, occurring
in D. To determine the best binary split on A, we examine all the possible subsets that can
be formed using known values of A. Each subset, SA, can be considered as a binary test
for attribute A of the form ”A ∈ SA?” Given a tuple, this test is satisfied if the value of A
for the tuple is among the values listed in SA. If A has ν possible values, then there are 2ν

possible subsets. For example, if income has three possible values, namely {low, medium,
high}, then the possible subsets are {low, medium, high}, {low, medium}, {low, high}, {medium,
high}, {low}, {medium}, {high}, and {}. We exclude the power set, {low, medium, high}, and the
empty set from consideration since, conceptually, they do not represent a split. Therefore,
there are (2ν−2)/2 possible ways to form two partitions of the data, D, based on a binary
split on A.
When considering a binary split, we compute a weighted sum of the impurity of each
resulting partition. For example, if a binary split on A partitions D into D1 and D2, the
Gini index of D given that partitioning is [HPK11]

Gini(D) =
|D1|
D

Gini(D1) +
|D2|
|D|

Gini(D2) (48)

The reduction in impurity that would be incurred by a binary split on a discrete- or
continuous-valued attribute A is

∆Gini(A) = Gini(D)−GiniA(D) (49)

MII-DS-09P-17-19 23

3 Research methodology and tools

The following methods were used in the research: theoretical analysis based on previ-
ous works; data collection, preparation, analysis, structuring and grouping; proposed
method testing and result analysis.

A free software environment for statistical computing and graphics R ([R C16]) and
its package package e1071 ([MDH+17]), were used to implement the algorithms and
techniques presented in this research.

3.1 Twitter research review

The main characteristic of the Twitter messages is their length, 140 characters, which
determines the text that the users post in the platform. Characteristics of the tweets:

1. The linguistic style of tweets is usually informal, with a lot of abbreviations, idioms,
and the use of jargon is very common.

2. The users do not care about the correct use of grammar, which increases the diffi-
culty of carrying out a linguistic analysis.

3. Because the maximum length of a tweet is 140 characters, the users usually refer to
the same concept with a large variety of short and irregular forms. This problem is
known as data sparsity, and it is a challenge for the sentiment-topic task.

4. The lack of context is a very difficult problem that the SA systems have to deal with.

Since 2009 the Sentiment Analysis research community has started to face the problem of
the computational treatment of opinions, sentiments and subjectivity in the short texts of
Twitter [MCMVULMR14].
Concerning the study of polarity in Twitter, most experiments assume that tweets are
subjective. One of the first studies on the classiffication of polarity in tweets was carried
out by Go, Bhayani and Huang [GBH09]. They conducted a supervised classification
study on tweets in English. If anything characterizes Twitter, it is the vast amount of
information published and the wide variety of topics on which users write. This makes
very difficult and expensive the construction and manual tagging of a corpus for the
supervised classification of polarity. Thus, the authors use the emoticons that usually ap-
pear in tweets to differentiate between positive and negative tweets. The validity of this
technique was demonstrated by Read [Rea05]. Through Twitter Search APIs, authors
generated a corpus of positive tweets, with positive emoticons ":)", and tweets with neg-
ative emoticons ":(". The corpus is used to study which features and which classification
algorithm are best for the classification of polarity on Twitter. The algorithms analysed
are the same as used by Pang et al. [PLV02], i.e. Support Vector Machine (SVM), Naïve
Bayes and maximum entropy. The authors obtained good results with the three algo-
rithms and the different features they tested.

MII-DS-09P-17-19 24

They drew some interesting conclusions, such as that the use of POS-TAGS does
not provide valuable information for the classification of polarity on Twitter, that the
simple use of unigrams to represent tweets provides very good results, comparable to
those obtained in the classification of polarity on long texts and, finally, that the results
obtained with unigrams can be slightly improved by the combination of unigrams and
bigrams [MCMVULMR14].
One of the problems of Sentiment Analysis in Twitter stressed in Aisopos et al. [APTV12]
was the sparsity of the texts due to the large variety of short and irregular forms found
in tweets because of the 140-character limit. Saif, He and Alani [SHA12] assessed two
methods for solving the sparsity problem. The first method consists of mapping some
words to semantic concepts, e.g. Mac, Ipod, Iphone and Ipad match with Apple Product,
and then applying an interpolation method. The other proposal is based on the joint
sentiment/topic model (JST) (Lin and He [LH09]) that instead of mapping semantic
concepts, clusters sentiment concepts. The two different models for representing the
tweets are used to train the Naïve Bayes algorithm. The corpus used for the experiment
is generated by Go et al. [GBH09]. The first evaluation concludes that the method based
on semantic interpolation is the best, but then, with the aim of comparing their results
with other works, Saif et al. tested their system with the test set of the corpus. In this
case, the JST model performed better than the model proposed by Saif et al. Moreover,
the JST model reached better results than those obtained with the same corpus in Go et
al. [GBH09] and Speriosu et al. [SSUB11] [MCMVULMR14].

MII-DS-09P-17-19 25

Table 1: Work in Sentiment Analysis in Twitter. Source [MCMVULMR14], modified by
author

Authors Objective Method Model Features Accuracy

Go et al.
(2009)
[GBH09]

Polarity
classification

Supervised SVM, NB,
Maximum
Entropy

Unigrams,
bigrams
Bigrams

Unigrams
+ Bigrams
Unigrams
+ POS

81.3 %–
82.2 %
78.8 %–
81.6 %
81.6 %–
83.0 %
79.9 %–
81.9 %

Bifetand
Frank
(2010) [BF10]

Polarity
classification

Supervised,
data stream
mining
methods

Multinomial
Naïve Bayes
SGD
Hoeffding tree

Unigrams 82.45 %

78.55 %
69.36 %

Zhang et al.
(2011)
[ZGD+11]

Sentiment
Analysis

Hybrid LMS
(Method
proposed)

Unigrams
(negation
considered)

88.8 %
91.0 %
88.2 %
81.0 %
78.0 %

Jiang et al.
(2011)
[JYZ+11]

Subjective
classification

Supervised SVM Unigrams
+Sentiment
Lexicon
Features
+Target-
dependent
features

61.1 %
63.8 %

68.2 %

Polarity
classification

SVM Unigrams
+Sentiment
Lexicon
Features
+Target-
dependent
features

78.8 %
84.2 %

85.6 %

MII-DS-09P-17-19 26

4 Methodology of the research

4.1 Implemented method

The proposed methodology is focused on combine SVM and Naive Bayes Classification
algorithms to get better results. Below (Fig.3.1) is presented system algorithm which
shows the principle of data processing from training data up to obtaining the results.

Figure 8: Proposed ensemble method. Created by author

MII-DS-09P-17-19 27

1. Collecting Twitter data. Tweets are collected using created R script. In this script
are specified date intervals and searched keyword. After tweets are collected, they
are exported to csv file.

2. Twitter data cleaning:

• Replace negative mentions (don’t -> do not and etc.).

• Replace smiles with meanings (” :)” - happy).

• Remove repeated letters.

• Replace acronyms with abbreviations.

• Remove ampersands.

• Remove retweet entities.

• Remove @.

• Remove punctuation symbols.

• Remove punctuation numbers.

• Remove links http.

• Remove tabs.

• Remove line breaks.

• Remove new line characters.

• Remove trailing and leading.

• Convert to lowercase.

3. Cleaned tweets are exported to csv file.

4. Trained data are cleaned and labeled tweets, which are downloaded from internet.

5. Train data are passed to SVM for learning and Test data - for results.

6. SVM results array. The results in array are stored as probabilities. If probability is
with minus sign - then it is negative sentiment, and if probability is with positive
sign - then it is positive sentiment. Each item of results array are checked if it is
equal or bigger than 0.9 (absolute values of a numbers are used), it means that this
is very strong probability that sentiment are classified correct. Those results directly
are storied in result file and tweets are added in train data with label positive or
negative and removed from test data. By continuing with each result item - the
train data file are increased and the test data file are decreased. Values which no
met described requirements are left in SVM result file. After all items of array are
checked new train and test data files are presented.

7. New train and new test data are passed to Naïve Bayes algorithm.

8. Combining results are presented in section 4.2.1 (Experimental steps).
MII-DS-09P-17-19 28

4.2 Planning a Research Experiment for implemented method

Research is contained three experiments. All experiments have the same steps, but
different datasets.

Experiment No 1.
Dataset is downloaded from https://github.com/victorneo/Twitter-Sentimental-Analysis. Files
"happy.txt" and "happy_test.txt" are combined into one file "positive.txt" and files
"sad.txt" and "sad_test.txt" are combined into one file "negative.txt". Files "positive.txt"
and "negative.txt" contain 90 records per file.

Experiment No 2.
Dataset is downloaded from http://www.cs.cornell.edu/people/pabo/movie-review-data/. File
name "polarity dataset v1.0". File contains 700 positive and 700 negative processed re-
views (Released July 2002). Positive reviews are added into file "positive.txt" and nega-
tive reviews are added into file "negative.txt"

Experiment No 3.
Third experiment is performed with real twitter data. for training is used dataset
downloaded from https://www.cs.uic.edu/ liub/FBS/sentiment-analysis.html [LHC05]. It is
actually a list of opinion lexicon: a list of English positive and negative opinion words or
sentiment words. List of positive words contains 2006 words and negative list contains
4783 words.

The steps of experiment
This steps are similar for all experiments.

1. Files "positive.txt" and "negative.txt" are spitted in training data ("posi-
tive_train.txt" and "negative_train.txt") and testing data ("positive_test.txt" and
"negative_test.txt"). Train/Test: 50/50; 60/40; 70/30; 80/20.

2. After splitting "positive_train.txt" and "negative_train.txt" are combined into one
file "train.txt" and "positive_test.txt" and "negative_test.txt" are combined into one
file "test.txt"

3. Three experiments will be performed, results will be comparied and accuracy will
be calculated.

5 Results

Four experiments were executed to evaluate the performance of proposed techniques:

1. In first experiment we used training dataset, which contains a list of English pos-
itive and negative opinion words or sentiment words. List of positive words con-
tains 2006 words and negative list contains 4783 words [LHC05], in total 6789

MII-DS-09P-17-19 29

words. For testing we used dataset which contains 80 happy and 80 sad emotions,
resulting in total 160 sentences. These sentences were split into words and used as
input for machine learning algorithms.

2. In second experiment we used the same training dataset as in first experiment, with
the testing dataset including 700 positive and 700 negative movie reviews (1400
movie reviews in total). These training dataset were also split into words before
using as machine learning algorithms input.

3. In third experiment we used the same training dataset as in experiments above, but
additionally 60% data was added from movie review dataset and we left 40% data
for testing. Training dataset contains 7629 words and reviews, and testing dataset
contains 560 movie reviews.

4. Finally, in the last experiment we used the same training and testing datasets, but
changed the proportion of training-testing dataset split to 80% and 20%, respec-
tively. The final training dataset contains 7909 words and reviews, while testing
dataset contains 280 movie reviews.

Table 2: Results. Creatied by author

Exp.
No.

Training
features

Training
dataset

Testing
features

Testing
dataset

SVM
results

Naïve
Bayes

New
method

1 words 6789 sentences 160 85.63% 83.13% 89.38%
2 words 6789 sentences 1400 68.21% 68.86% 69.43%
3 words+

sentences
7629 sentences 560 75.71% 52.68% 74.46%

4 words
sentences

7909 sentences 280 77.86% 53.57% 78.21%

The table 4.1 show that the best results we got when using a list of English positive
and negative opinion words or sentiment words for recognize sentiments in ordinary
speech. Our introduced method gave results 89,38%. When we use this above described
dataset for recognize movie reviews sentiments, we got better results 69,43% than SVM
and Naive Bayes, but they are lower to compare with previous experiment results. In
third experiment SVM shown the better results than our introduced method, when was
added 60% of movie review dataset for training to recognize the remaining 40%. Our
introduced method shown 78,21% in the last experiment, when was added 80% of movie
review dataset for training to recognize the remaining 20%. As we can see the best results
are when testing dataset is the smallest and the lowest (except Naive Bayes) - when the
testing dataset is the biggest. Also results shown that the training dataset should be from
the same area like the testing dataset. Naive Bayes classification with default parameters
MII-DS-09P-17-19 30

are not very good for recognize sentiments from whole sentence if we don’t split it in the
words.

6 Conclusions

In this section, we compared two supervised machine learning algorithms of SVM
and Naive Bayes classification with our introduced method for the ordinary speech
and movie reviews sentiment recognizing. SVM and Naive Bayes classification were
used with their default parameters. The experimental results show that our introduced
method gave us higher accuracy 89,38% when we use ordinary speech testing dataset
than SVM and Naive Bayes classification. However for the movie reviews, the accuracy
are lower but better than both others alghorithms, except third experiment, where SVM
gave better accuracy 75,71%. We have found out that it is very important to use testing
data which are from the same area like training data, as we can see in first experiment.

References

[AG97] Yali Amit and Donald Geman. Shape quantization and recognition
with randomized trees. Neural computation, 9(7):1545–1588, 1997.

[APTV12] Fotis Aisopos, George Papadakis, Konstantinos Tserpes, and
Theodora Varvarigou. Content vs. context for sentiment analysis: a
comparative analysis over microblogs. In Proceedings of the 23rd ACM
conference on Hypertext and social media, pages 187–196. ACM, 2012.

[B+96] Leo Breiman et al. Heuristics of instability and stabilization in model
selection. The annals of statistics, 24(6):2350–2383, 1996.

[BF10] Albert Bifet and Eibe Frank. Sentiment knowledge discovery in twit-
ter streaming data. In International conference on discovery science, pages
1–15. Springer, 2010.

[BGV92] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A train-
ing algorithm for optimal margin classifiers. In Proceedings of the fifth
annual workshop on Computational learning theory, pages 144–152. ACM,
1992.

[BK99] Eric Bauer and Ron Kohavi. An empirical comparison of voting classi-
fication algorithms: Bagging, boosting, and variants. Machine learning,
36(1):105–139, 1999.

[BPP96] Adam L Berger, Vincent J Della Pietra, and Stephen A Della Pietra. A
maximum entropy approach to natural language processing. Compu-
tational linguistics, 22(1):39–71, 1996.

MII-DS-09P-17-19 31

[Bre96] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140,
1996.

[Bre01] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[BS+84] Bruce G Buchanan, Edward Hance Shortliffe, et al. Rule-based expert
systems, volume 3. Addison-Wesley Reading, MA, 1984.

[Bun90] Wray Buntine. A theory of learning classification rules. In Doctoral
dissertation. School of Computing Science, University of Technology.
Sydney. Australia, 1990.

[CB91] Peter Clark and Robin Boswell. Rule induction with cn2: Some recent
improvements. In European Working Session on Learning, pages 151–
163. Springer, 1991.

[CCR78] Abraham Charnes, William W Cooper, and Edwardo Rhodes. Mea-
suring the efficiency of decision making units. European journal of op-
erational research, 2(6):429–444, 1978.

[CCS12] Adele Cutler, D Richard Cutler, and John R Stevens. Random forests.
In Ensemble machine learning, pages 157–175. Springer, 2012.

[CL11] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support
vector machines. ACM transactions on intelligent systems and technology
(TIST), 2(3):27, 2011.

[CR00] Stanley F Chen and Ronald Rosenfeld. A survey of smoothing tech-
niques for me models. IEEE transactions on Speech and Audio Processing,
8(1):37–50, 2000.

[DC01] Sanjiv Das and Mike Chen. Yahoo! for amazon: Extracting market
sentiment from stock message boards. In Proceedings of the Asia Pa-
cific finance association annual conference (APFA), volume 35, page 43.
Bangkok, Thailand, 2001.

[DEYM02] Philip Derbeko, Ran El-Yaniv, and Ron Meir. Variance optimized
bagging. In European Conference on Machine Learning, pages 60–72.
Springer, 2002.

[DLP03] Kushal Dave, Steve Lawrence, and David M Pennock. Mining the
peanut gallery: Opinion extraction and semantic classification of
product reviews. In Proceedings of the 12th international conference on
World Wide Web, pages 519–528. ACM, 2003.

[DPDPL97] Stephen Della Pietra, Vincent Della Pietra, and John Lafferty. Induc-
ing features of random fields. IEEE transactions on pattern analysis and
machine intelligence, 19(4):380–393, 1997.

MII-DS-09P-17-19 32

[DS79] Belur V Dasarathy and Belur V Sheela. A composite classifier system
design: concepts and methodology. Proceedings of the IEEE, 67(5):708–
713, 1979.

[DTR10] Dmitry Davidov, Oren Tsur, and Ari Rappoport. Enhanced sentiment
learning using twitter hashtags and smileys. In Proceedings of the 23rd
international conference on computational linguistics: posters, pages 241–
249. Association for Computational Linguistics, 2010.

[DWH03] Evgenia Dimitriadou, Andreas Weingessel, and Kurt Hornik. A clus-
ter ensembles framework, design and application of hybrid intelligent
systems, 2003.

[Eng07] Andries P Engelbrecht. Computational intelligence: an introduction. John
Wiley & Sons, 2007.

[ET93] Bradley Efron and Robert J Tibshirani. An introduction to the boot-
strap: Monographs on statistics and applied probability, vol. 57. New
York and London: Chapman and Hall/CRC, 1993.

[FS+96] Yoav Freund, Robert E Schapire, et al. Experiments with a new boost-
ing algorithm. In icml, volume 96, pages 148–156, 1996.

[GBH09] Alec Go, Richa Bhayani, and Lei Huang. Twitter sentiment classifica-
tion using distant supervision. CS224N Project Report, Stanford, 1(12),
2009.

[Han00] Jakob Vogdrup Hansen. Combining predictors: Meta machine learn-
ing methods and bias/variance & ambiguity decompositions. PhD thesis,
Aarhus University, Computer Science Department, 2000.

[HPK11] Jiawei Han, Jian Pei, and Micheline Kamber. Data mining: concepts and
techniques. Elsevier, 2011.

[HS90] Lars Kai Hansen and Peter Salamon. Neural network ensembles. IEEE
transactions on pattern analysis and machine intelligence, 12(10):993–1001,
1990.

[JYZ+11] Long Jiang, Mo Yu, Ming Zhou, Xiaohua Liu, and Tiejun Zhao. Target-
dependent twitter sentiment classification. In Proceedings of the 49th
Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies-Volume 1, pages 151–160. Association for Com-
putational Linguistics, 2011.

[LH09] Chenghua Lin and Yulan He. Joint sentiment/topic model for senti-
ment analysis. In Proceedings of the 18th ACM conference on Information
and knowledge management, pages 375–384. ACM, 2009.

MII-DS-09P-17-19 33

[LHC05] Bing Liu, Minqing Hu, and Junsheng Cheng. Opinion observer: ana-
lyzing and comparing opinions on the web. In Proceedings of the 14th
international conference on World Wide Web, pages 342–351. ACM, 2005.

[Liu07] Bing Liu. Web data mining: exploring hyperlinks, contents, and usage data.
Springer Science & Business Media, 2007.

[Liu15] Bing Liu. Sentiment analysis: Mining opinions, sentiments, and emotions.
Cambridge University Press, 2015.

[LN15] Bac Le and Huy Nguyen. Twitter sentiment analysis using machine
learning techniques. In Advanced Computational Methods for Knowledge
Engineering, pages 279–289. Springer, 2015.

[MCMVULMR14] Eugenio Martínez-Cámara, M Teresa Martín-Valdivia, L Alfonso
Urena-López, and A Rturo Montejo-Ráez. Sentiment analysis in twit-
ter. Natural Language Engineering, 20(1):1–28, 2014.

[MDH+17] David Meyer, Evgenia Dimitriadou, Kurt Hornik, Andreas Weinges-
sel, and Friedrich Leisch. e1071: Misc Functions of the Department of
Statistics, Probability Theory Group (Formerly: E1071), TU Wien, 2017. R
package version 1.6-8.

[MSIDLM06] Francisco Moreno-Seco, José M Inesta, Pedro J Ponce De León, and
Luisa Micó. Comparison of classifier fusion methods for classification
in pattern recognition tasks. In SSPR/SPR, pages 705–713. Springer,
2006.

[NLM99] Kamal Nigam, John Lafferty, and Andrew McCallum. Using maxi-
mum entropy for text classification. In IJCAI-99 workshop on machine
learning for information filtering, volume 1, pages 61–67, 1999.

[NR13] MS Neethu and R Rajasree. Sentiment analysis in twitter using ma-
chine learning techniques. In Computing, Communications and Net-
working Technologies (ICCCNT), 2013 Fourth International Conference on,
pages 1–5. IEEE, 2013.

[NY03] Tetsuya Nasukawa and Jeonghee Yi. Sentiment analysis: Capturing
favorability using natural language processing. In Proceedings of the
2nd international conference on Knowledge capture, pages 70–77. ACM,
2003.

[OS96] David W Opitz and Jude W Shavlik. Generating accurate and diverse
members of a neural-network ensemble. In Advances in neural infor-
mation processing systems, pages 535–541, 1996.

MII-DS-09P-17-19 34

[PL04] Bo Pang and Lillian Lee. A sentimental education: Sentiment anal-
ysis using subjectivity summarization based on minimum cuts. In
Proceedings of the 42nd annual meeting on Association for Computational
Linguistics, page 271. Association for Computational Linguistics, 2004.

[PL+08] Bo Pang, Lillian Lee, et al. Opinion mining and sentiment analysis.
Foundations and Trends R© in Information Retrieval, 2(1–2):1–135, 2008.

[PLV02] Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Thumbs up?:
sentiment classification using machine learning techniques. In Pro-
ceedings of the ACL-02 conference on Empirical methods in natural language
processing-Volume 10, pages 79–86. Association for Computational Lin-
guistics, 2002.

[R C16] R Core Team. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria, 2016.

[Rea05] Jonathon Read. Using emoticons to reduce dependency in machine
learning techniques for sentiment classification. In Proceedings of the
ACL student research workshop, pages 43–48. Association for Computa-
tional Linguistics, 2005.

[Rok10a] Lior Rokach. Ensemble-based classifiers. Artificial Intelligence Review,
33(1):1–39, 2010.

[Rok10b] Lior Rokach. Pattern classification using ensemble methods, volume 75.
World Scientific, 2010.

[SC01] So Young Sohn and Hong Choi. Ensemble based on data envelopment
analysis. In ECML Meta Learning workshop, volume 53, 2001.

[Sch90] Robert E Schapire. The strength of weak learnability. Machine learning,
5(2):197–227, 1990.

[SHA12] Hassan Saif, Yulan He, and Harith Alani. Alleviating data sparsity for
twitter sentiment analysis. CEUR Workshop Proceedings (CEUR-WS.
org), 2012.

[Shl90] Seymour Shlien. Multiple binary decision tree classifiers. Pattern
Recognition, 23(7):757–763, 1990.

[SSUB11] Michael Speriosu, Nikita Sudan, Sid Upadhyay, and Jason Baldridge.
Twitter polarity classification with label propagation over lexical links
and the follower graph. In Proceedings of the First workshop on Unsu-
pervised Learning in NLP, pages 53–63. Association for Computational
Linguistics, 2011.

MII-DS-09P-17-19 35

[TG01] Kagan Tumer and Joydeep Ghosh. Robust order statistics based en-
sembles for distributed data mining. Technical report, TEXAS UNIV
AT AUSTIN DEPT OF ELECTRICALAND COMPUTER ENGINEER-
ING, 2001.

[Ton01] Richard M Tong. An operational system for detecting and tracking
opinions in on-line discussion. In Working Notes of the ACM SIGIR
2001 Workshop on Operational Text Classification, volume 1, page 6, 2001.

[TTC09] Huifeng Tang, Songbo Tan, and Xueqi Cheng. A survey on sentiment
detection of reviews. Expert Systems with Applications, 36(7):10760–
10773, 2009.

[Tuk77] John W Tukey. Exploratory data analysis. 1977.

[Tur02] Peter D Turney. Thumbs up or thumbs down?: semantic orientation
applied to unsupervised classification of reviews. In Proceedings of
the 40th annual meeting on association for computational linguistics, pages
417–424. Association for Computational Linguistics, 2002.

[XZL11] Rui Xia, Chengqing Zong, and Shoushan Li. Ensemble of feature sets
and classification algorithms for sentiment classification. Information
Sciences, 181(6):1138–1152, 2011.

[YNBN03] Jeonghee Yi, Tetsuya Nasukawa, Razvan Bunescu, and Wayne
Niblack. Sentiment analyzer: Extracting sentiments about a given
topic using natural language processing techniques. In Data Mining,
2003. ICDM 2003. Third IEEE International Conference on, pages 427–
434. IEEE, 2003.

[ZCL+98] He Zhenya, Wei Chengjian, Yang Luxi, Gao Xiqi, Yao Susu, Russell C
Eberhart, and Yuhui Shi. Extracting rules from fuzzy neural network
by particle swarm optimisation. In Evolutionary Computation Proceed-
ings, 1998. IEEE World Congress on Computational Intelligence., The 1998
IEEE International Conference on, pages 74–77. IEEE, 1998.

[ZGD+11] L Zhang, R. Ghosh, M. Dekhil, M. Hsu, and B Liu. Combining lexicon-
based and learning-based methods for twitter sentiment analysis. In
Technical Report HPL-2011-89, 2011.

[ZM12] Cha Zhang and Yunqian Ma. Ensemble machine learning: methods and
applications. Springer, 2012.

MII-DS-09P-17-19 36

	Introduction
	A review of existing techniques and problem domain
	Literature review
	Ensemble methods overview
	Boosting
	AdaBoost
	AdaBoost.M1
	AdaBoost.M2

	The Bagging algorithm
	Fusions Methods
	Weighting Methods
	Majority Voting
	Performance Weighting
	Distribution Summation
	Bayesian Combination
	Dempster-Shafer
	Vogging
	Entropy-Weighting
	Density-based Weighting
	DEA Weighting Method
	Logarithmic Opinion Pool
	Order Statistics

	Relevant machine learning algorithms
	Naïve Bayes Classification
	Support Vector Machines
	Maximum Entropy
	Random Forests
	Particle Swarm Optimization (PSO)
	Global Best PSO
	Local Best PSO

	Decision Tree
	ID3 (Iterative Dichotomiser)
	C4.5
	CART

	Research methodology and tools
	Twitter research review

	Methodology of the research
	Implemented method
	Planning a Research Experiment for implemented method

	Results
	Conclusions
	References

