
Vilnius University
Institute of Data Science and

Digital Technologies
L I T H U A N I A

INFORMATICS (09 P)

THE RESEARCH OF INTELLIGENT
METHODS FOR OPINION MINING IN

BIG DATA ARRAYS

Konstantinas Korovkinas

October 2018

Technical Report MII-DS-09P-18-19

VU Institute of Data Science and Digital Technologies, Akademijos str. 4, Vilnius
LT-08663,
Lithuania

www.mii.lt

http://www.mii.lt


Abstract

This report follows an important problem of sentiment recognition which may influence
ones decisions or reviews about item and etc. This report contains introduction,
a review of existing techniques and problem domain, methodology of the research
and experimental research. A new method is introduced to improve classification
performance in sentiment analysis, by combining SVM and Naïve Bayes classification
results to recognize positive or negative sentiment, and test in on datasets with simple
sentiments from ordinary speech and from movie reviews. This method is evaluated
on a training dataset which consists positive and negative words, and hold-out testing
dataset, as well as on its complement with additional training data.

Keywords: sentiment analysis, machine learning algorithms, SVM, Naïve Bayes
classification
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1 Introduction

The main goal of research related to sentiment analysis (abbr. as SA) is to obtain authors
feelings expressed in positive or negative comments. This analysis is performed in
multiple levels: document, sentence, word/term or aspect. According to Pang and Lee in
[PL+08] the term “sentiment” appears in 2001 papers [DC01,Ton01] and subsequently in
2002 papers [Tur02, PLV02]. Opinion mining is another term in certain respects parallels
to sentiment analysis, appeared in 2003 paper by Dave et. al. [DLP03]. They described the
ideal opinion-mining tool like “process a set of search results for given item, generating
a list of product attributes (quality, features, etc.) and aggregating opinions about each of
them (poor, mixed, good)” [DLP03].
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Support vector machine (abbr. as SVM) were introduced in papers [BGV92, CV95].
According to a number of authors, who worked with SVM, this method proved its
efficiency to solve difficult tasks in various domains: for recognition of regulatory
DNA sequences (Damaševičius in [Dam10]), for EEG Data classification (Martisius et
al. [MDJB12]), for classification of images ( [TKF15]), for credit risk evaluation (Danenas
and Garsva in [DG15]), for Sensor Multifault Diagnosis (Deng et al. [DGZC17]), for
monitoring metal-oxide surge arrester conditions (Hoang et al. in [HCAV18]), for
Multi-class parkinsonian disorders classification (Morisi et al. in [MMG+18]), for
Forecasting Stock Market Movement Direction (Ren et al. in [RWL18]), for Sentiment
Analysis (Liu and Lee in [LL18], Chen and Zhang in [CZ18]) and etc.

1.1 Research problem

Sentiment analysis from text is considered as very challenging area – although a lot
of work has been done in this field, accuracy is still rather average due to comments,
slang, smiles and etc. To increase accuracy, researchers use natural language processing
(abbr. as NLP), various text analyzing techniques, combinations of different machine
learning algorithms. When it goes to a large volume of data – big data text arrays, SVM
performance decreases dependently on dataset size – the higher number of features is,
the longer computation time it requires. There have been a number of efforts to speed
up SVM including implementation on Graphics Processor Unit, using cloud computing
technology, selecting only representative data for training.

Aforementioned problems led to development a method for sentiment polarity
prediction.

1.2 The object of research

The main object of this research is to propose a hybrid K-means and SVM method for
sentiment polarity classification in large scale text arrays.

1.3 The goal and objectives of the research

The aim of the research is to propose an approach to hybrid K-means and SVM method
for sentiment polarity prediction in large scale text arrays.

The objectives of the dissertation:

1. Investigate related works in sentiment analysis and identify their advantages.
2. Analyze machine learning algorithms for sentiment analysis.
3. Propose hybrid sentiment polarity classification method for researched problem.
4. To perform experimental evaluation of developed techniques.
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1.4 Research methodology and tools

The following methods were used: formulation of research tasks and goals; related works
analysis; data collection, cleaning, preparation; comparison of techniques; experimental
research; results analysis, presentation, comparison; formulation of conclusions.

For hybrid method development and performing experiments were used: Python
programming language, scikit-learn [PVG+11]: library for machine learning. For
graphical results presentation Matplotlib [Hun07]: 2D graphics environment. For
preparing dissertation, diagrams were used LaTeX2 – A document preparation system.

Experiments were performed with existing datasets: The Stanford Twitter sentiment
corpus3 and Amazon customer reviews dataset4.

For experiments is used computer with processor Intel(R) Core(TM) i7-4712MQ CPU
@ 2.30 GHz and 8.00 GB installed memory (RAM).

1.5 The statements of the thesis

1. Proposed hybrid K-means and SVM method can be applied on a small and huge
datasets.

2. Small representative dataset for training can obtain the same or better results than
the huge.

3. SVM is very sensitive for parameters tuning. The properly tuned hyperplane can
perform better results.

4. Method can be applied for different domains.

1.6 Scientific novelty and practical significance

In this dissertation is proposed hybrid sentiment analysis method. Differently from other
authors work, this method consists from two main parts: training data creation and SVM
spead up. First part includes: cluster selection algorithm; features retrieving from text;
dataset preparation, using various techniques. In another part of method presented SVM
speed up technique and hyperplane tuning. Proposed method can be applied in different
domains to predict sentiments from text.

Since sentiment analysis is still very challenging area and at the same time
very useful, the proposed hybrid K-means and SVM method for sentiment polarity
classification in large scale text arrays can be used in new models development or for
improving existing. The sentiment analysis is widely used for product reviews, customer
churn prediction, fraud detection, president election and etc.

2https://www.latex-project.org/
3http://help.sentiment140.com/home
4https://www.kaggle.com/bittlingmayer/amazonreviews/
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1.7 Presentation and approbation of results

Conferences
1. Information Technologies (IT2018), The 23th Conference for Master and PhD

students, Kaunas, Lithuania, 2018.
2. The Symposium for Young Scientists in Technology, Engineering and Mathematics

(SYSTEM2018), The 23th Conference for Master and PhD students, Gliwice, Poland,
2018.

3. The 24th International Conference on Information and Software Technologies
(ICIST 2018), Kaunas, Lithuania, 2018.

Publications
International journals, which are included in Scientific Master Journal List (ISI):

1. Korovkinas, K., Danėnas, P., Garšva, G., 2017. SVM and Naïve Bayes Classification
Ensemble Method for Sentiment Analysis. Baltic Journal of Modern Computing,
5(4), pp. 398–409.

Proceedings of scientific conferences, indexed in Scientific Master Journal Proceeding List (ISI):

1. Korovkinas, K., Danėnas, P., Garšva, G., 2018. SVM accuracy and training speed
trade-off in sentiment analysis tasks. In International Conference on Information
and Software Technologies (pp. 227-239). Springer, Cham.

Proceedings of other conferences:

1. Korovkinas, K., Garšva, G., 2018. Selection of intelligent algorithms for sentiment
classification method creation. Proceedings of the International Conference on
Information Technologies, Vol–2145, Kaunas, Lithuania, pp. 152–157, ISSN
1613-0073, CEUR. Available: http://ceur-ws.org/Vol-2145/p26.pdf

2. Vaitonis, M., Masteika, S., Korovkinas, K. 2018. Algorithmic trading and machine
learning based on GPU. Proceedings of the Symposium for Young Scientists in
Technology, Engineering and Mathematics, Vol–2147, Gliwice, Poland, pp. 49–54,
ISSN 1613-0073, CEUR. Available: http://ceur-ws.org/Vol-2147/p09.pdf

1.8 Thesis structure

The thesis contains introduction, 4 chapters, conclusion and list of references. The total
volume of the dissertation is ?? pages. The list of references contains ?? various sources,
including books, scientific papers, technical reports, Internet sources, patents. The work
consists of five main parts: introduction, analytical, methodological, experimental and
conclusions.

In introduction section are presented the research problem and object, the goal
and objectives, methodology and tools, the statements, scientific novelty, practical
significance and the lists of publications, where results were published.
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Analytical section (review of existing techniques and problem domain) contains an
overview of works in sentiment analysis; definitions and comparison of machine learning
techniques; conclusion of the section.

2 A review of existing techniques and problem domain

2.1 Sentiment analysis

Sentiment analysis became very popular since people start using Internet, to be more
concrete when appeared e-shops, social networks, Blogs and etc., where people can
write their comments. Nowadays if you want to get opinion about hotel, movie, book,
commodity, game, restaurant and so on, you can find all information what you need in
Internet. But these tasks are not so easy, because of huge data amount. Then there is a
need in application which can do it instead of us and give the final result.

Liu in [Liu15] gives a definition of sentiment analysis. He described it as “the field
of study that analyzes people’s opinions, sentiments, appraisals, attitudes, and emotions
toward entities and their attributes expressed in written text.”. According to him this field
represents a huge problem space due “many related names and slightly different tasks”.
“Sentiment analysis, opinion mining, opinion analysis, opinion extraction, sentiment
mining, subjectivity analysis, affect analysis,emotion analysis, and review mining”,
according to Liu are “all under the umbrella of sentiment analysis.”.

Basically sentiment analysis is divided into lexicon-based methods and machine
learning methods [MF11]. For better results, authors also mixed aforementioned
methods. Mainly SA tasks have two approaches: feature extraction and sentiment
classification (prediction). In the further sections are presented an overview of works
in this field.

2.1.1 Machine learning in sentiment analysis

Traditionally, sentiment classification can be regarded as a binary-classification task (Pang
et al. in [PLV02]; Dave et al. in [DLP03]). According to Pang et al. in [PLV02] sentiment
analysis is the extraction of positive or negative opinions from text. Dave et al. in
[DLP03] use structured reviews for testing and training, identifying appropriate features
and scoring methods from information retrieval for determining whether reviews are
positive or negative. These results perform as well as traditional machine learning
method then use the classifier to identify and classify review sentences from the web,
where classification is more difficult (Khainar and Kinikar in [KK13]). Authors in
[PL+08, TTC09, Liu15] expressed an overview in sentiment analysis in which analyzed
the strong points and the weak points of sentiment analysis and they gave many research
ways of sentiment analysis.

Machine learning algorithms are one part of sentiment analysis. A lot of works
7



are done and many classifiers are compared for SA tasks and many authors conclude
that SVM proved to perform best. Pang et al. in [PLV02] evaluated the performance
of Naïve Bayes, maximum entropy (abbr. as MaxEnt), and support vector machines
in the specific domain of movie reviews, obtaining accuracy slightly above 80%. Go
et al. in [GBH09] later obtained similar results with unigrams by introducing a more
novel approach to automatically classify the sentiment of Twitter messages as either
positive or negative with respect to a query term. The same techniques were also
used in Kharde and Sonawane in [KS+16] to perform sentiment analysis on Twitter
data, yet resulting in lower accuracy; again, SVM proved to perform best. Davidov et
al. [DTR10] also stated that SVM and Naïve Bayes are best techniques to classify the data
and can be regarded as the baseline learning methods, by applying them for analysis
based on the Twitter user defined hashtag in tweets. Kapočiut et al. in [KKK+13]
used knowledge-based and machine learning approaches for sentiment classification into
positive, negative and neutral on Lithuanian internet comments. Support Vector Machine
and Naïve Bayes Multinomial significantly outperform their proposed knowledge-based
method. Le and Nguyen in [LN15] proposed a sentiment analysis model based on
Naïve Bayes and Support Vector Machine, for feature extraction they applied Information
Gain, Bigram, Object-oriented extraction method in purpose to analyze sentiment more
effectively. Gautam and Yadav in [GY14] applied Naïve Bayes, Maximum entropy and
SVM along with the Semantic analysis for classifying the sentence and product reviews
based on twitter data into positive and negative. Naïve Bayes shown the better accuracy
88.2% than SVM (85.5%) and Maximum entropy (83.8%). After Semantic analysis was
applied, they improved accuracy from 88.2% to 89.9%. Kolchyna et al. in [KSTA15]
presented a new ensemble method that uses a lexicon based sentiment score as input
feature for the machine learning approach and applied it on the benchmark Twitter
dataset using three machine learning algorithms: SVM, Decision trees (abbr. as DT)
and Naïve Bayes. Results show that when was used only N-grams as the features,
SVM achieved accuracy 86.62%, NB - 81.5% and DT - 80.57%. After a new method
was applied results increased as follow: SVM - to 91.17%, Decision tree - to 89.9% and
NB - to 88.54%. Kanakaraj et al. in [KG15] also presented the semantics based feature
vector with ensemble classifier for Twitter data sentiment analysis. The new method was
compared with widely used machine learning algorithms like Naïve Bayes, Maximum
Entropy, SVM, Decision Tree, Random Forest (abbr. as RF), Extremely Randomized
Trees and Decision Tree regression with Ada Boost. Proposed method outperformed
single machine learning classifier by 3-5%. Wan and Gao in [WG15] used Naïve Bayes,
SVM, Bayesian Network, C4.5 Decision Tree and Random Forest algorithms for creation
ensemble method based on Majority Vote principle of multiple classification methods
and applied it for sentiment classification on Twitter Data for Airline Services. Amolik
et al. in [AJBV16] achieved 75% accuracy with SVM and 65% with Naïve Bayes on
Twitter sentiment analysis of Movie reviews classifying tweets as positive, negative
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and neutral. Tripathy et al. in [TAR16] applied Naive Bayes, Maximum Entropy,
Stochastic Gradient Descent and Support Vector Machine on Movie review dataset, using
n-gram approach and various combination of it for sentiment classification into positive
or negative. The best results were obtained when used: “Unigram+Bigram+Trigram”
with SVM 88.94% or Naïve Bayes 86.23%; “Unigram+Bigram” with SVM 88.88% or
Maximum entropy 88.42%; “Unigram” with Maximum entropy 88.48% or SVM 86.97%.
Authors in [BDDN14, MHK14, AAMA17] did a review on machine learning techniques
for sentiment analysis. Well known techniques like Maximum Entropy, SailAil Sentiment
Analyzer, Multilayer Perceptron, Naïve Bayes, Multinomial Naïve Bayes, Support Vector
Machine, Random forest were discussed and compared accuracy on different datasets.
Pranckevičius and Marcinkevičius in [PM17] did investigation on Naïve Bayes, Random
Forest, Decision Tree, Support Vector Machines, and Logistic Regression (abbr. as LR)
classifiers implemented in Apache Spark and identify the optimal number of n-grams to
get the best accuracy. Technique applied on Amazon customers’ product-review data for
Android Apps. Rathor et al. in [RAD18] also applied Support Vector Machines, Naïve
Bayes and Maximum Entropy for classification Amazon reviews into positive, neutral
and negative. Naïve Bayes shown the bests results with Unigrams - 66.84%, however
SVM provide better with Weighted Unigrams - 81.20% . Manikandan and Sivakumar
in [MS18] provided a review of the principles, advantages and applications of document
classification, Document clustering and text mining, focusing on the existing literature.
According approaches on machine learning the common algorithms for text classification
are: Naïve Bayes Classifier, Support Vector Machine Learning, Decision Tree, Rocchio’s
Algorithm, K-Nearest Neighbor (K-NN), Decision Rules Classification, Artificial Neural
Network, Fuzzy correlation and Genetic Algorithm. They concluded that SVM, NB, kNN
and their hybrid system with the combination of different other algorithms are shown
most appropriate.

Literature review led to conclusions that Naïve Bayes, Random Forest, Decision Tree,
Support Vector Machines and Maximum Entrophy (aka Logistic Regression) are still
widely used Machine learning algorithms.

2.2 Machine learning algorithms

2.2.0.1 Naïve Bayes Classification

A Naïve Bayes classifier is a simple probabilistic classifier based on Bayes’ theorem and is
particularly suited when the dimensionality of the inputs are high. In text classification,
the given document is assigned a class

C∗ = argmax
c

p(c|d)
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Its underlying probability model can be described as an “independent feature model”.
The Naïve Bayes (NB) classifier uses the Bayes’ rule Eq. (2.1),

p(c|d) =
p(c)p(d, c)

p(d)
(1)

Where, p(d) plays no role in selecting C∗. To estimate the term p(d|c), Naïve Bayes
decomposes it by assuming the fi’s are conditionally independent given d’s class as in
Eq.(2.2),

pNB (c, d) =

p(c)

(
m∏
i=1

p(fi, c)
ni(d)

)
p(d)

(2)

Where, m is the no of features and fi is the feature vector. Consider a training method
consisting of a relative-frequency estimation p(c) and p (fi|c) (Pang et al. in [PLV02]).

2.2.1 Multinomial Naïve Bayes

Multinomial Naïve Bayes, presented by Pedregosa et al. in [PVG+11] implements the
Naïve Bayes algorithm for multinomially distributed data, and is one of the two classic
Naïve Bayes variants used in text classification (where the data are typically represented
as word vector counts, although tf-idf vectors are also known to work well in practice).
The distribution is parametrized by vectors θy = (θy1, . . . , θyn) for each class y, where n
is the number of features (in text classification, the size of the vocabulary) and θyi is the
probability P (xi | y) of feature i appearing in a sample belonging to class y.

The parameters θy is estimated by a smoothed version of maximum likelihood, i.e.
relative frequency counting:

θ̂yi =
Nyi + α

Ny + αn

where Nyi =
∑

x∈T xi is the number of times feature i appears in a sample of class y
in the training set T , and Ny =

∑|T |
i=1Nyi is the total count of all features for class y.

The smoothing priors α ≥ 0 accounts for features not present in the learning samples
and prevents zero probabilities in further computations. Setting α = 1 is called Laplace
smoothing, while α < 1 is called Lidstone smoothing [PVG+11].

2.2.2 Support Vector Machines

Support vector machines were introduced in [BGV92,CV95] and basically attempt to find
the best possible surface to separate positive and negative training samples in supervised
manner.
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2.2.3 C-Support Vector Classification

Given training vectors xi ∈ Rn, i = 1, . . . , l, in two classes, and an indicator vector y ∈
Rl such that yi ∈ {1,-1}, C − SV C (Boser et al. in [BGV92]; Cortes and Vapnik, in [CV95])
solves the following primal optimization problem (Chang et al. in [CL11]).

min
w,b,ξ

1

2
wTw + C

l∑
i=1

ξi (3)

subject to yi(w
Tφ(xi) + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, . . . , l

where φ(xi) maps xi into a higher-dimensional space and C > 0 is the regularization
parameter. Due to the possible high dimensionality of the vector variable w, usually we
solve the following dual problem.

min
α

1

2
αTQα− eTα (4)

subject to yTα = 0,

0 ≤ α ≤ C, i = 1, . . . , l

where e = [1, ..., l]T is the vector of all ones, Q is an l by l positive semidefinite matrix,
Qij ≡ yiyjK(xi, xj), and K(xi, xj) ≡ φ(xi)

Tφ(xj) is the kernel function.
After problem (2.4) is solved, using the primal-dual relationship, the optimal w

satisfies.

w =

l∑
i=1

yiαiφ(xi) (5)

and the decision function is

sgn(wTφ(x) + b) = sgn

(
l∑

i=1

yiαiK(xi, x) + b

)

(Chang and Lin in [CL11])

2.2.4 Linear SVM

Linear SVM (Fan et al. in [FCH+08]) is optimized for large-scale learning.
Given training vectors xi ∈ Rn, i = 1, . . . , l in two class, and a vector y ∈ Rl such

that yi = {1,-1}, a linear classifier generates a weight vector w as the model. The decision
function is

sgn(wTx)
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L2-regularized L1-loss SVC solves the following primal problem:

min
w

1

2
wTw + C

l∑
i=1

(max(0, 1− yiwTxi))

whereas L2-regularized L2-loss SVC solves the following primal problem:

min
w

1

2
wTw + C

l∑
i=1

(max(0, 1− yiwTxi))2 (6)

Their dual forms are:

min
α

1

2
αT Q̄α− eTα

subject to 0 ≤ αi ≤ U, i = 1, . . . , l

where e is the vector of all ones, Q̄ = Q + D, D is a diagonal matrix, and Qij =

yiyjx
T
i xj . For L1-loss SVC, U = C and Dii = 0,∀i. For L2-loss SVC, U = ∞ and Dii =

1/(2C), ∀i.
L1 regularization generates a sparse solution w. L1-regularized L2-loss SVC solves

the following primal problem:

min
w
‖w‖1 + C

l∑
i=1

(max(0, 1− yiwTxi))2 (7)

where ‖ · ‖1 denotes the 1-norm. (Fan et al. in [FCH+08])

2.2.5 Logistic Regression

The logistic regression model arises from the desire to model the posterior probabilities
of the K classes via linear functions in x, while at the same time ensuring that they sum
to one and remain in [0, 1]. The model has the form

log
Pr(G = 1|X = x)

Pr(G = K|X = x)
= β10 + βT1 x

log
Pr(G = 2|X = x)

Pr(G = K|X = x)
= β20 + βT2 x (8)

...

log
Pr(G = K − 1|X = x)

Pr(G = K|X = x)
= β(K−1)0 + βTK−1x

The model is specified in terms of K − 1 log-odds or logit transformations (reflecting
the constraint that the probabilities sum to one). Although the model uses the last class
as the denominator in the odds-ratios, the choice of denominator is arbitrary in that the
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estimates are equivariant under this choice. A simple calculation shows that

Pr(G = k|X = x) =
exp(βk0 + βTk x)

1 +
∑K−1

l=1 exp(βl0 + βTl x)
,

k = 1, . . . ,K − 1,

P r(G = K|X = x) =
1

1 +
∑K−1

l=1 exp(βl0 + βTl x)
, (9)

and they clearly sum to one. To emphasize the dependence on the entire parameter set
θ = {β10, βT1 , . . . , β(K−1)0, βTK−1}, we denote the probabilities Pr(G = k|X = x) = pk(x; θ)

(Trevor et al. in [TRJ09]).

2.2.6 Random Forests

Random Forests were introduced by Leo Breiman in [Bre01] who was inspired by earlier
work by Amit and Geman in [AG97].
Random Forest is a tree-based ensemble with each tree depending on a collection of
random variables. More formally, for a p-dimensional random vector X = (X1, . . . , Xp)

T

representing the real-valued input or predictor variables and a random variable Y
representing the real-valued response, we assume an unknown joint distribution
PXY (X,Y ). The goal is to find a prediction function f(X) for predicting Y. The prediction
function is determined by a loss function L(Y, f(X)) and defined to minimize the expected
value of the loss

EXY (L(Y, f(X))) (10)

where the subscripts denote expectation with respect to the joint distribution of X and
Y [CCS12].
Intuitively, L(Y, f(X)) is a measure of how close f(X) is to Y; it penalizes values of f(X) that
are a long way from Y. Typical choices of L are squared error loss L(Y, f(X)) = (Y −f(X))2

for regression and zero-one loss for classification:

L(Y, f(X)) = I(Y 6= f(X)) =

0 if Y = f(X)

1 otherwise.
(11)

It turns out that minimizingEXY (L(Y, f(X))) for squared error loss gives the conditional
expectation

f(x) = E(Y |X = x) (12)

otherwise known as the regression function. In the classification situation, if the set of
possible values of Y is denoted byY , minimizingEXY (L(Y, f(X))) for zero-one loss gives
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f(x) = argmax
y∈Y

P (Y = y|X = x) (13)

otherwise known as the Bayes rule [CCS12]. Ensembles construct f in terms of a collection
of so-called “base learners” h1(x), . . . , hJ(x) and these base learners are combined to give
the “ensemble predictor” f(x). In regression, the base learners are averaged

f(x) =
1

J

J∑
j=1

hj(x) (14)

while in classification, f(x) is the most frequently predicted class (“voting”)

f(x) = argmax
y∈Y

J∑
j=1

I(y = hj(x)) (15)

In Random Forests the jth base learner is a tree denoted hj(X,Θj), where Θj is a collection
of random variables and the Θj ’s are independent for j = 1, . . . , J (Cutler et al. in
[CCS12]).

2.2.7 Decision Tree

Decision tree induction is the learning of decision trees from class-labeled training tuples.
A decision tree is a flowchart-like tree structure, where each internal node (nonleaf node)
denotes a test on an attribute, each branch represents an outcome of the test, and each
leaf node (or terminal node) holds a class label. The topmost node in a tree is the root
node [HPK11].

2.2.7.1 ID3 (Iterative Dichotomiser)

ID3 a decision tree algorithm is developed by J. Ross Quinlan, a researcher in machine
learning. It uses information gain as its attribute selection measure. This measure is based
on pioneering work by Claude Shannon on information theory, which studied the value
or “information content” of messages. Let node N represent or hold the tuples of partition
D. The attribute with the highest information gain is chosen as the splitting attribute for
node N. This attribute minimizes the information needed to classify the tuples in the
resulting partitions and reflects the least randomness or “impurity” in these partitions.
Such an approach minimizes the expected number of tests needed to classify a given tuple
and guarantees that a simple (but not necessarily the simplest) tree is found [HPK11].

The expected information needed to classify a tuple in D is given by

Info(D) = −
m∑
i=1

pi log2(pi) (16)
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where pi is the nonzero probability that an arbitrary tuple in D belongs to class Ci and is
estimated by |Ci, D|/|D|. A log function to the base 2 is used, because the information is
encoded in bits. Info(D) is just the average amount of information needed to identify the
class label of a tuple in D [HPK11].

Now, suppose we were to partition the tuples in D on some attribute A having ν

distinct values, {a1, a2, ..., aν}, as observed from the training data. If A is discrete-valued,
these values correspond directly to the ν outcomes of a test on A. Attribute A can be used
to split D into ν partitions or subsets, {D1, D2, ..., Dν}, where Dj contains those tuples in
D that have outcome aj of A. These partitions would correspond to the branches grown
from node N. Ideally, we would like this partitioning to produce an exact classification
of the tuples. That is, we would like for each partition to be pure. However, it is quite
likely that the partitions will be impure (e.g., where a partition may contain a collection
of tuples from different classes rather than from a single class).
How much more information would we still need (after the partitioning) to arrive at an
exact classification? This amount is measured by

InfoA(D) =
ν∑
j=1

|Dj |
|D|
× Info(Di) (17)

The term |Dj|
|D| acts as the weight of thejth partition. InfoA(D) is the expected

information required to classify a tuple from D based on the partitioning by A. The
smaller the expected information (still) required, the greater the purity of the partitions.

Information gain is defined as the difference between the original information
requirement (i.e., based on just the proportion of classes) and the new requirement (i.e.,
obtained after partitioning on A). That is [HPK11],

Gain(A) = Info(D)− InfoA(D) (18)

2.2.7.2 C4.5

C4.5 also presented by Quilan. C4.5, a successor of ID3, uses an extension to information
gain known as gain ratio, which attempts to overcome this bias. It applies a kind of
normalization to information gain using a “split information” value defined analogously
with Info(D) as

SplitInfoA(D) = −
ν∑
j=1

|Dj |
|D|
× log2

(
|Dj |
|D|

)
(19)

This value represents the potential information generated by splitting the training
data set, D, into ν partitions, corresponding to the ν outcomes of a test on attribute A.

Note that, for each outcome, it considers the number of tuples having that outcome
with respect to the total number of tuples in D. It differs from information gain, which
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measures the information with respect to classification that is acquired based on the same
partitioning. The gain ratio is defined as [HPK11]

GainRatio(A) =
Gain(A)

SplitInfoAD
(20)

2.2.7.3 CART

CART - Classification and Regression Trees. The Gini index is used in CART. Using the
notation previously described, the Gini index measures the impurity of D, a data partition
or set of training tuples, as

Gini(D) = 1−
m∑
i=1

p2i (21)

where pi is the probability that a tuple in D belongs to class Ci and is estimated by
|Ci,D|/|D|. The sum is computed over m classes. [HPK11]

The Gini index considers a binary split for each attribute. Let’s first consider the case
where A is a discrete-valued attribute having v distinct values, {a1, a2, . . . , aν}, occurring
in D. To determine the best binary split on A, we examine all the possible subsets that can
be formed using known values of A. Each subset, SA, can be considered as a binary test
for attribute A of the form “A ∈ SA?′′ Given a tuple, this test is satisfied if the value of A
for the tuple is among the values listed in SA. If A has ν possible values, then there are 2ν

possible subsets. For example, if income has three possible values, namely {low, medium,
high}, then the possible subsets are {low, medium, high}, {low, medium}, {low, high}, {medium,
high}, {low}, {medium}, {high}, and {}. We exclude the power set, {low, medium, high}, and the
empty set from consideration since, conceptually, they do not represent a split. Therefore,
there are (2ν−2)/2 possible ways to form two partitions of the data, D, based on a binary
split on A.

When considering a binary split, we compute a weighted sum of the impurity of each
resulting partition. For example, if a binary split on A partitions D into D1 and D2, the
Gini index of D given that partitioning is [HPK11]

Gini(D) =
|D1|
D

Gini(D1) +
|D2|
|D|

Gini(D2) (22)

The reduction in impurity that would be incurred by a binary split on a discrete- or
continuous-valued attribute A is [HPK11]

∆Gini(A) = Gini(D)−GiniA(D) (23)
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2.2.8 Comparison of machine learning algorithms for sentiment analysis

Below is presented Naïve Bayes, Support vector machine, Logistic regression, Random
forest and Decision tree comparison table.

Table 1: ML comparison

ML Popularity* Accuracy** Performance**

NB ? ? ?? ? ? ? ? ? ? ? ?

SVM ? ? ? ? ? ? ? ? ? ? ? ? ?

LR (MaxEnt) ? ? ? ? ? ?? ? ? ??

RF ? ? ? ? ??

DT ?? ? ? ? ? ? ??

Source: created by the author.
* applicability for sentiment analysis tasks, created based on K. Ravi and V. Ravi survey [RR15].

** based on researches in sentiment analysis.

2.3 Support Vector Machines

2.3.1 Researches in SVM optimization

According to a number of authors, who worked on SVM hyperparameter optimization,
SVM proved its efficiency to solve difficult tasks in various domains. Damaševičius
in [Dam10] used SVM for classification of DNA sequences and recognition of the
regulatory sequences. The results demonstrated that selection of the kernel type and
its parameters have direct impact on the performance of the SVM and accuracy of the
results. Sunkad in [S+16] proposed the best set of features and the SVM hyperparameters
for obtaining the best results in human activity recognition. Osman et al. in [OGN17]
tuned hyperparameters of two machine learning algorithms to improve bug prediction
accuracy. They concluded that the k-nearest neighbours algorithm always significantly
improved and the prediction accuracy of support vector machines either improved or
was at least retained. Liu and Zio in [LZ17] used one synthetic dataset and two real time
series data, related to prediction of wind speed in a region and leakage from the reactor
coolant pump in a nuclear power plant and proposed the preferable choice for tuning
SVM hyperparameters for recursive multi-step-ahead prediction.

However, despite all advantages, typical for SVM algorithm, it is characterized
by slow performance in the big data arrays. The higher number of features is, the
longer computation time it requires. There have been a number of efforts to speed up
SVM, and most of them focus on reduction of the training set. Lee and Mangasarian
in [LM01] proposed the Reduced Support Vector Machine (RSVM) algorithm which uses
a randomly selected subset of the data that is typically 10% or less of the original dataset
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to obtain a nonlinear separating surface. RSVM performs better than a conventional
SVM, sequential minimal optimization (SMO) and projected conjugate gradient chunking
(PCGC). Lei and Govindaraju in [LG05] introduced a reduction of the feature space using
principal component analysis (PCS) and Recursive Feature Elimination (RFE). PCA and
RFE can speed up the evaluation of SVM by an order of 10 while maintaining comparable
accuracy. Graf et al. in [GCB+05] proposed the Cascade SVM, where the training set is
first divided into a number of subsets and then these subsets are optimized by multiple
SVMs. The partial results were combined and filtered again in the “Cascade” of SVMs,
until the global optimum was reached. Later, Meyer et al. in [MBW14] introduced a new
stepwise bagging approach that exploits parallelization in a better way than the Cascade
SVM and contains an adaptive stopping-time to select the number of stages for improving
accuracy. Nandan et al. in [NKT14] used a linear time algorithm based on convex hulls
and extreme points to select subset, the so-called representative set of the training data for
SVM optimization. Wang et al. in [WLL+14] reduced SVM training time using only the
most informative samples, obtained after removing most of the training data. Guo and
Boukir in [GB15] proposed a new ensemble margin-based data selection approach based
on a simple and efficient heuristic to provide support vector candidates: they selected the
lowest margin instances that reduced SVM training task complexity while maintaining
the accuracy of the SVM classification. Mao et al. in [MFWH16] trained number of kernel
SVMs on the randomly selected small subsets of training data and concluded that it is
more efficient than training a single kernel SVM on the whole training data especially
for large datasets. Mourad et al. in [MTV17] proposed a computationally efficient subset
selection algorithm for fast SVM training on large scale data. Liu et al. in [LZ17] proposed
to train an approximate SVM by using the anchors obtained from non-negative matrix
factorization (NMF) in a divide-and-conquer framework.

2.4 Heuristic optimization techniques

Heuristics optimization methods are very common in use combined with other machine
learning algorithms to improve their accuracy, for feature selection tasks and etc.
Elbeltagi et al. in [EHG05] compared five evolutionary-based optimization algorithms.
According them five recent evolutionary-based algorithms are: genetic algorithms,
memetic algorithms, particle swarm, ant-colony optimization, and shuffled frog leaping.
They conclude that “the PSO method was generally found to perform better than other
algorithms in terms of success rate and solution quality, while being second best in terms
of processing time”. Further is presented descriptions of each algorithm.

2.4.1 Genetic algorithms

The genetic algorithm (abbr. as GA) is an optimization and search technique based on
the principles of genetics and natural selection. A GA allows a population composed
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of many individuals to evolve under specified selection rules to a state that maximizes
the “fitness” (i.e., minimizes the cost function). The method was developed by John
Holland in [Hol75] over the course of the 1960s and 1970s and finally popularized by
one of his students, David Goldberg, who was able to solve a difficult problem involving
the control of gas-pipeline transmission for his dissertation (Holland and Goldberg in
[HG89]) [HHH98].

GAs work with a random population of solutions (chromosomes). The fitness of each
chromosome is determined by evaluating it against an objective function. To simulate the
natural survival of the fittest process, best chromosomes exchange information (through
crossover or mutation) to produce offspring chromosomes. The offspring solutions are
then evaluated and used to evolve the population if they provide better solutions than
weak population members. Usually, the process is continued for a large number of
generations to obtain a best-fit (nearoptimum) solution [EHG05].

Genetic Algorithm

Generate random population of P solutions (chromosomes);
For each individual i ∈ P: calculate fitness (i);

For i=1 to number of generations;
Randomly select an operation (crossover or mutation);
If crossover;

Select two parents at random ia and ib;
Generate on offspring ic = crossover(ia and ib);

Else If mutation;
Select one chromosome i at random;
Generate an offspring ic = mutate (i);

End If;
Calculate the fitness of the offspring ic;
If ic is better than the worst chromosome then replace the worst chromosome by ic;

Next i;
Check if termination = true;

Figure 1: Source: Elbeltagi et al. [EHG05]

Based on Haupt et al. in [HHH98] advantages of a GA are as follow:

• Optimizes with continuous or discrete variables,
• Doesn’t require derivative information,
• Simultaneously searches from a wide sampling of the cost surface,
• Deals with a large number of variables,
• Is well suited for parallel computers,
• Optimizes variables with extremely complex cost surfaces (they can jump out of a

local minimum),
• Provides a list of optimum variables, not just a single solution,
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• May encode the variables so that the optimization is done with the encoded
variables,
• Works with numerically generated data, experimental data, or analytical functions.

2.4.2 Memetic algorithms

According Elbeltagi et al. in [EHG05] “Memetic algorithms (abbr. as MA) are inspired by
Dawkins’ notion of a meme [Daw76]. MAs are similar to GAs but the elements that form
a chromosome are called memes, not genes. The unique aspect of the MAs algorithm
is that all chromosomes and offsprings are allowed to gain some experience, through a
local search, before being involved in the evolutionary process [MF97]”. Like genetic
algorithms, memetic Algorithms are a population-based approach. They have shown
that they are orders of magnitude faster than traditional genetic Algorithms for some
problem domains. In a memetic algorithm the population is initialized at random or
using a heuristic. Then, each individual makes local search to improve its fitness. To form
a new population for the next generation, higher quality individuals are selected. The
selection phase is identical inform to that used in the classical genetic algorithm selection
phase. Once two parents have been selected, their chromosomes are combined and the
classical operators of crossover are applied to generate new individuals. The latter are
enhanced using a local search technique. The role of local search in memetic algorithms
is to locate the local optimum more efficiently then the genetic algorithm [Gar10].

2.4.3 Particle Swarm Optimization (PSO)

A PSO algorithm maintains a swarm of particles, where each particle represents a
potential solution. In analogy with evolutionary computation paradigms, a swarm is
similar to a population, while a particle is similar to an individual. In simple terms,
the particles are “flown” through a multidimensional search space, where the position of
each particle is adjusted according to its own experience and that of its neighbors.
Let xi(t) denote the position of particle i in the search space at time step t; unless
otherwise stated, t denotes discrete time steps. The position of the particle is changed
by adding a velocity, vi(t), to the current position, i.e.

xi(t+ 1) = xi(t) + vi(t+ 1) (24)

with xi(0) ∼ U(xmin, xmax).
It is the velocity vector that drives the optimization process, and reflects both the
experiential knowledge of the particle and socially exchanged information from the
particle’s neighborhood. The experiential knowledge of a particle is generally referred
to as the cognitive component, which is proportional to the distance of the particle from
its own best position (referred to as the particle’s personal best position) found since the
first time step. The socially exchanged information is referred to as the social component

20



Memetic Algorithm

Generate random population of P solutions (chromosomes);
For each individual i ∈ P: calculate fitness (i);
For each individual i ∈ P: do local-search (i);

For i=1 to number of generations;
Randomly select an operation (crossover or mutation);
If crossover;

Select two parents at random ia and ib;
Generate on offspring ic = crossover(ia and ib);
ic = local-search(ic);

Else If mutation;
Select one chromosome i at random;
Generate an offspring ic = mutate (i);
ic = local-search(ic);

End If;
Calculate the fitness of the offspring ic;
If ic is better than the worst chromosome then replace the worst chromosome by ic;

Next i;
Check if termination = true;

the memetic local search
Select an incremental value d = a*Rand(), where a is a constant that suits the variable values;
For a given chromosome i ∈ P: calculate fitness (i);
For j = 1 to number of variables in chromosome i;

Value (j) = value (j) - d;
If chromosome fitness not improved then value (j) = value (j) - d;
If chromosome fitness not improved then retain the original value (j);

Next j;

Figure 2: Source: Elbeltagi et al. [EHG05]

of the velocity equation [Eng08].

2.4.3.1 Global Best PSO

For gbest PSO, the velocity of particle i is calculated as.

vij(t+ 1) = vij(t) + c1r1j(t) [yij(t)− xij(t)] + c2r2j(t)
[
ŷj(t)− xij(t)

]
(25)

where vij(t) is the velocity of particle i in dimension j = 1, . . . , nx at time step
t, xij(t) is the position of particle i in dimension j at time step t, c1 and c2 are
positive acceleration constants used to scale the contribution of the cognitive and social
components respectively, and r1j(t), r2j(t) ∼ U(0, 1) are random values in the range [0,
1], sampled from a uniform distribution. These random values introduce a stochastic
element to the algorithm.
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The personal best position, yi, associated with particle i is the best position the particle
has visited since the first time step. Considering minimization problems, the personal
best position at the next time step, t+ 1, is calculated as [Eng08].

yi(t+ 1) =

yi(t) if f(xi(t+ 1)) ≥ f(yi(t))

xi(t+ 1) if f(xi(t+ 1)) < f(yi(t))
(26)

where f : Rnx → R is the fitness function. As with EAs, the fitness function measures how
close the corresponding solution is to the optimum, i.e. the fitness function quantifies the
performance, or quality, of a particle (or solution) [Eng08].
The global best position, ŷ(t), at time step t, is defined as

ŷ(t) ∈ {y0(t), . . . , yns(t)}|f(ŷ(t)) = min{f(y0(t)), . . . , f(yns(t))} (27)

where ns is the total number of particles in the swarm. ŷ is the best position discovered
by any of the particles so far - it is usually calculated as the best personal best position.
The global best position can also be selected from the particles of the current swarm, in
which case [ZCL+98, Eng08]

ŷ(t) = min{f(x0(t)), . . . , f(xns(t))} (28)

gbest PSO algorithm
Create and initialize an nx-dimensional swarm;
repeat

for each particle i = 1, . . . , ns do
//set the personal best position
if f(xi) < f(yi) then
yi = xi;

end
//set the global best position
if f(yi) < f (ŷ) then

ŷ = yi;
end

end
for each particle i = 1, . . . , ns do

update the velocity using equation (2.25);
update the position using equation (2.24);

end
until stopping condition is true;

Figure 3: gbest PSO algorithm [Eng08]
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2.4.3.2 Local Best PSO

The velocity is calculated as

vij(t+ 1) = vij(t) + c1r1j(t) [yij(t)− xij(t)] + c2r2j(t)
[
ŷij(t)− xij(t)

]
(29)

where ŷij is the best position, found by the neighborhood of particle i in dimension j.
The local best particle position, ŷi, i.e. the best position found in the neighborhood Ni, is
defined as

ŷ(t+1) ∈ {Ni|f(ŷ(t+1)) = min{f(x)},∀x ∈ Ni} (30)

with the neighborhood defined as

Ni = {yi−nNi
(t), yi−nNi

+1(t), . . . , yi−1(t), yi(t), yi+1(t), . . . , yi+nNi
(t)} (31)

for neighborhoods of size nNi . The local best position will also be referred to as the
neighborhood best position.
Particles within a neighborhood have no relationship to each other. Selection of
neighborhoods is done based on particle indices. However, strategies have been
developed where neighborhoods are formed based on spatial similarity [Eng08].

lbest PSO algorithm
Create and initialize an nx-dimensional swarm;
repeat

for each particle i = 1, . . . , ns do
//set the personal best position
if f(xi) < f(yi) then
yi = xi;

end
//set the neighborhood best position
if f(yi) < f (ŷi) then

ŷ = yi;
end

end
for each particle i = 1, . . . , ns do

update the velocity using equation (2.29);
update the position using equation (2.24);

end
until stopping condition is true;

Figure 4: lbest PSO algorithm [Eng08]
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2.4.4 Ant-colony system

Ant system [Dor92] is the progenitor of all our research efforts with ant algorithms
and was first applied to the traveling salesman problem. Ant-colony system (abbr.
as ACS) algorithms are stochastic search procedures. Their central component is the
pheromone model, which is used to probabilistically sample the search space. Informally,
the ACS works as follows: ants are initially positioned on cities chosen according to some
initialization rule. Each ant builds a tour by repeatedly applying a stochastic greedy rule.
While constructing its tour, an ant also modifies the amount of pheromone on the visited
edges by applying the local updating rule. Once all ants have terminated their tour, the
amount of pheromone on edges is modified again (by applying the global updating rule).
As was the case in ant system, ants are guided, in building their tours, by both heuristic
information (they prefer to choose short edges) and by pheromone information. An edge
with a high amount of pheromone is a very desirable choice. The pheromone updating
rules are designed so that they tend to give more pheromone to edges which should be
visited by ants [DG97].

In the Ant-colony optimization algorithm, the process starts by generating m random
ants (solutions). An ant k (k = 1, 2, . . . ,m) represents a solution string, with a selected
value for each variable. Each ant is then evaluated according to an objective function.
Accordingly, pheromone concentration associated with each possible route (variable
value) is changed in a way to reinforce good solutions, as follows [DG97] [EHG05]:

τij(t) = ρτij(t− 1) +∆τij ; t = 1, 2, . . . , T (32)

where T is the number of iterations (generation cycles); τij(t) is the revised
concentration of pheromone associated with option lij at iteration t, τij(t − 1) is the
concentration of pheromone at the previous iteration (t−1); ∆τij =change in pheromone
concentration; and ρ = pheromone evaporation rate (0-1). The reason for allowing
pheromone evaporation is to avoid too strong influence of the old pheromone to avoid
premature solution stagnation [MMS02] [EHG05]. In Eq. (2.32), the change in pheromone
concentration∆τij = is calculated as [DG97] [EHG05]:

∆τij =
m∑
k=1

R/fitnessk if option lij is chosen by antk

0 otherwise
(33)

where R is a constant called the pheromone reward factor; and fitnessk is the value of
the objective function (solution performance) calculated for ant k. It is noted that the
amount of pheromone gets higher as the solution improves. Therefore, for minimization
problems, Eq. (2.33) shows the pheromone change as proportional to the inverse of
the fitness. In maximization problems, on the other hand, the fitness value itself can
be directly used. Once the pheromone is updated after an iteration, the next iteration
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starts by changing the ants’ paths (i.e. associated variable values) in a manner that
respects pheromone concentration and also some heuristic preference. As such, an ant k
at iteration t will change the value for each variable according to the following probability
[DG97] [EHG05]:

Pij(k, t) =
[τij(t)]

α × [ηij ]
β∑

lij
[τij(t)]α × [ηij ]β

(34)

where Pij(k, t) = probability that option lij is chosen by ant k for variable i at iteration t;
τij(t) =pheromone concentration associated with option lij at iteration t; ηij =heuristic
factor for preferring among available options and is an indicator of how good it is for ant
k to select option lij (this heuristic factor is generated by some problem characteristics and
its value is fixed for each option lij); and α and β are exponent parameters that control
the relative importance of pheromone concentration versus the heuristic factor [MSZ+03]
[EHG05]. Both α and β can take values greater than zero and can be determined by trial
and error. Based on the previous discussion, the main parameters involved in ACO are:
number of ants m; number of iterations t; exponents α and β; pheromone evaporation
rate ρ; and pheromone reward factor R [EHG05].

Ant-colony optimization

Initialize the pheromone trails and parameters;
Generate population of m solutions (ants);
For each individual ant k ∈ m: calculate fitness (k);
For each ant determine its best position;
Determine the best global ant;
Update the pheromone trail;

Check if termination = true;

Figure 5: Source: Elbeltagi et al. [EHG05]

2.4.5 Shuffled frog leaping

The Shuffled frog leaping (abbr. as SFL) has been designed as a meta-heuristic to perform
an informed heuristic search using a heuristic function (any mathematical function) to
seek a solution of a combinatorial optimization problem. It is based on evolution of
memes carried by the interactive individuals, and a global exchange of information
among themselves [ELP06].

Initial population of P frogs is created randomly. For S-dimensional problems (S
variables), a frog i is represented as Xi = (xi1, xi2, . . . , xiS). Afterwards, the frogs are
sorted in a descending order according to their fitness. Then, the entire population is
divided into m memeplexes, each containing n frogs (i.e. P = m × n). In this process,
the first frog goes to the first memeplex, the second frog goes to the second memeplex,
frog m goes to the mth memeplex, and frog m + 1 goes back to the first memeplex, etc.
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Within each memeplex, the frogs with the best and the worst fitnesses are identified as
Xb and Xw, respectively. Also, the frog with the global best fitness is identified as Xg.
Then, a process similar to PSO is applied to improve only the frog with the worst fitness
(not all frogs) in each cycle. Accordingly, the position of the frog with the worst fitness is
adjusted as follows:

Change in frog position(Di) = rand()× (Xb −Xw) (35)

New positionXw = current positionXw +Di;Dmax ≥ D ≥ −Dmax (36)

where rand() is a random number between 0 and 1; and Dmax is the maximum allowed
change in a frog’s position. If this process produces a better solution, it replaces the worst
frog. Otherwise, the calculations in Eqs. (8) and (9) are repeated but with respect to the
global best frog (i.e. Xg replaces Xb). If no improvement becomes possible in this case,
then a new solution is randomly generated to replace that frog. The calculations then
continue for a specific number of iterations [EL03]. Accordingly, the main parameters
of SFL are: number of frogs P; number of memeplexes; number of generation for each
memeplex before shuffling; number of shuffling iterations; and maximum step size
[EHG05].

Shuffled frog leaping

Generate random population of P solutions (frogs);
For each individual i ∈ P: calculate fitness (i);
Sort the population P in descending order of their fitness;

Divide P into m memeplexes;
For each memeplex;

Determine the best and worst frogs;
Improve the worst frog position using:
Improve the worst frog position using Eqs. (2.32) or (2.33)
Repeat for a specific number of iterations;

End;
Combine the evolved memeplexes;
Sort the population P in descending order of their fitness;

Check if termination = true;

Figure 6: Source: Elbeltagi et al. [EHG05]

2.5 Clustering techniques in sentiment analysis

k-Means (MacQueen et al. in [M+67]) is one of the most popular and widely known
techniques, used as standalone technique or in combination with others. Gu and Han
in [GH13] proposed Clustered Support Vector Machine (CSVM) method, using k-Means
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for data dividing in clusters, in each to train linear SVM. Yao et al. in [YLY+13] used
k-Means clustering algorithm to select the most informative samples into small subset
from original training set for SVM training. Kurasova et al. in [KMM+14] presented
an overview of techniques used for big data clustering and also identified k-means as
one of the most popular and efficient techniques. Gan et al. in [GLL+17] used k-Means
to construct a pre-selection scheme, which obtains a subset of important instances
as training set for SVM. They reported that proposed KA-SVM has the outstanding
performance on both of classification accuracy and computation efficiency. Wang et al.
in [WZC+18] improved the spam filtering speed and filtering accuracy by proposed a
fast content-based spam filtering algorithm with fuzzy-SVM and k-Means. k-Means was
used to compress data with retain most of the effective information.

2.5.1 k-Means

k-Means (MacQueen et al. in [M+67]) is one of the oldest and widely research
clustering algorithm. It is often preferred due to its simplicity and generally very fast
performance. The main idea is to partition the input dataset into k clusters, represented
by adaptively-changing centroids (also called cluster centers); they are initialized using
so-called seed-points. k-Means computes the squared distances between the input data
points and centroids, and assigns inputs to the nearest centroid. Formally, to solve
problem of clustering N input data points x1, x2, . . . , xN into k disjoint subsets Ci, i =
1,. . . ,k, each containing ni data points, 0 < ni < N , the following mean-square-error
(MSE) cost-function is minimized:

JMSE =
k∑
i=1

∑
xt∈Ci

‖xt − ci‖2 (37)

xt is a vector representing the t-th data point in the cluster Ci and ci is the geometric
centroid of the clusterCi. Finally, this algorithm seeks to minimize JMSE , where ‖xt−ci‖2

is a chosen distance measurement between data point xt and the cluster centre ci. An
input data point xt is assigned to cluster i if it satisfies the following condition:

i = arg min(‖xt − cj‖2) j = 1, . . . , k (38)

Cluster centers c1, c2, cj , . . . , ck can be obtained with the following steps [Ž08]:

Step 1: Initialize k cluster centres c1, c2, . . . , ck by some initial values called
seed-points, using random sampling.
For each input data point xt and all k clusters, repeat steps 2 and 3 until all centres
converge.

Step 2: Calculate cluster membership function I(xt, i) by Eq. (4) and decide the
membership of each input data point in one of the k clusters whose cluster centre is
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closest to that point.

Step 3: For all k cluster centres, set ci to be the centre of mass of all points in cluster
Ci.

2.6 Natural language processing

Natural language processing (abbr. as NLP) defined by Liddy in [lid01] is “ a theoretically
motivated range of computational techniques for analyzing and representing naturally
occurring texts at one or more levels of linguistic analysis for the purpose of achieving
human-like language processing for a range of tasks or applications”. According Sun et
al. [SLC17] opinion mining requires several preprocessing steps for structuring the text
and extracting features, including tokenization, word segmentation, Part of Speech (POS)
tagging, parsing.

Tokenization is a fundamental technique for most NLP tasks. It splits a sentence
or document into tokens which are words or phrases. For Chinese, Japanese or other
languages which do not have explicit word boundary markers, tokenization is not as
trivial as English and word segmentation is required. The word segmentation is a
sequential labeling problem [SLC17].

Part of Speech (abbr. as POS) tagging and parsing are techniques that analyze the
lexical and syntactic information. POS tagging is used to determine the corresponding
POS tag for each word. The POS tags, such as adjective, noun, are quite helpful because
opinion words are usually adjectives and opinion targets (i.e., entities and aspects) are
nouns or combination of nouns. While POS tagging provides lexical information, parsing
obtains syntactic information. Parsing produces a tree which represents the grammatical
structure of a given sentence with the corresponding relationship of different constituents
[SLC17]. Neethu and Rajasree in [NR13] proposed feature vector creation technique,
which includes the 8 features: part of speech (pos) tag, special keyword, presence
of negation, emoticon, number of positive keywords, number of negative keywords,
number of positive hash tags and number of negative hash tags. According them
“keywords that are adjective, adverb or verb shows more emotion than others.” Ortigosa
et al. [OMC14] combined lexicon based approach with ML algorithms and achieved the
better results. Sentiment extraction contains these steps: lower-case, idiom detection;
segmentation into sentences; tokenization; emoticon detection; interjection detection;
token score assignation; POS tagging and syntactical analysis; polarity calculation. Pak
and Paroubek in [PP10] for feature extraction used: filtering, which includes URL
links, Twitter user names, Twitter special words and emoticons removal; tokenization;
stopwords removal; n-grams constructing. Boiy and Moens in [BM09] for feature
selection used unigrams, stems, negation, discourse features, depth difference, path
distance and simple distance. Abdi et al. in [ASHP18] also used sentiment lexicon
feature, negation features, sentence types, punctuation feature, POS feature, sentiment
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score feature. Yousefpour in [YIH17] used n-gram features, POS, negation, sentiment
lexicon, syntactic and semantic dependency. Bharti and Singh in [BS15] applied stop
words removal, stemming, tokenization, term weighting, relevance score computation,
term variance, document frequency and merge feature sublists.

2.7 Features extraction techniques

Features extraction one of the NLP techniques and another very important part of
sentiment analysis. Properly extracted features can increase accuracy of machine learning
algorithm [KSTA15, KG15]. Tommasel and Godoi in [TG18] did a review of features
selection techniques for short texts. According to summary of these techniques, the most
commonly used data preprocessing are the following:

• Tokenisation [WHYL12, LYC+10, TXW+14, VVC+11, TWY+14, OSO12];
• Stopword removal [HSZC09, VVC+11, OSO12, THGL13, FZYL14, TL12];
• Stemming [OSO12, THGL13, TL12];
• TF-IDF irrelevant feature removal [TL12];
• Special symbol removal [VVC+11, FZYL14];
• URL’s removal [VVC+11, TWY+14, SHA12, AAM+14];
• Remove of usernames [TWY+14, SHA12, AAM+14];
• Remove tweets with less than 7 tokens [TWY+14, JYZ+11];
• Remove hashtags and non-alphabetic characters [SHA12];
• Nouns, verbs, and adjectives are kept [WHYL12, LYC+10, TXW+14];
• Tweet segmentation [LSD12].

N-grams is another feature extracting technique which are comonly used in NLP. The
mostly use are: unigrams, bigrams, trigrams and combination of them [PLV02, DLP03,
NNVP14]. Agarwal and Mittal in [AM+16] gave definition of Unigrams and Bigrams.
According them Unigram features are “simply bag-of-words(BoW) features extracted
by eliminating extra spaces and noisy characters between two words”. Respectively
Bigrams are “the features, consisting of every two consecutive words in the text”. Then
we can define Trigrams as the features, consisting of every three consecutive words in the
text. From the definitions we can see, that the prefix before “gram” points to number of
consecutive words in the text.

2.8 Conclusions

In this section is presented related works in sentiment polarity classification field using
machine learning algorithms.

1. The analysis has shown that sentiment analysis area is very challenging and
interesting for researchers.
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2. The literature analysis shown what Naïve Bayes Classification, Support vector
machine, Logistic Regression, Random Forest and Decision Tree are the mostly used
in sentiment analysis. Comparison of aforementioned techniques shown that SVM
proved the best with its efficiency to solve diffcult tasks in various domains with
higher accuracy.

3. Further SVM approaches characterized it by slow performance in the big data
arrays. The higher number of features is, the longer computation time it requires.
However SVM is very sensitive for parameter tuning. The accuracy can be
significantly increased by correct parameter selecting. However literature still does
not provide any heuristic rules or rules of thumb for SVM parameter selection and
it is still one of the biggest issues, related to practical SVM research and application.

4. Researches by combining machine learning algorithms and NLP also shown
promising results when the higher accuracy is needed.

5. The most common heuristic optimization techniques are overviewed and PSO
is selected for methodology, which is presented in chapter “Methodology of the
research”.

3 Methodology of the research

3.1 Proposed method

Our introduced methodology is focused on combine SVM and Naïve Bayes classification
algorithms to get better results. It is presented in paper Korovkinas et al. [KDG17].
In the figure below is presented system algorithm which show us principle of data
processing from training data up to obtaining the results. Training and testing data
had been preprocessed and cleaned before it was passed as the input of machine
learning algorithms. It included removing redundant tokens such as hashtag symbols
@, numbers, “http” for links, punctuation symbols, etc. Below are presented algorithms
which are used in “Combination”. “Results” is the final results set with classified
sentiments: “positive” or “negative”.

Algorithm for words
Input: Let us denote the probability of word selection as p, and the threshold for its
selection as th1.The threshold values were selected by manually investigating the results.
We found that the performance was optimal when word selection probability for was set
to p ≥ 0.8, therefore it was selected as threshold value th1 for the algorithm for words.
Dtest = {S1, S2, . . . , Sn} - set of testing data;
S = {w1, w2, . . . , wn} - sentences;
w - words which are contained in sentence;
RSVM = {SVMsent, v} - set of SVM results, SVMsent - sentiment;
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Training data

Naïve Bayes
classification

SVM

Testing data

SVM results Naïve Bayes results

Combination

Results

Figure 7: Proposed method for combining results.

RNB = {NBsent, v} - set of Naïve Bayes classification results, NBsent - sentiment;
v - value for Sum results.

1. SVM classification is performed:

RSVM = {}

for ∀Si ∈ Dtest :

vi = 0;

for ∀wj ∈ Si :

pass wj to SVM input (output SVMsentj and pj)

if |pj | ≥ th1

if SVMsentj <> “positive′′

pj = −(pj)

vi = vi + pj

RSVM = RSVM ∪ {SVMsenti, vi}, SVMsenti =

“positive′′, if vi ≥ 0

“negative′′, if vi < 0

2. Naïve Bayes classification is performed:

RNB = {}

for ∀Si ∈ Dtest :

vi = 0;
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for ∀wj ∈ Si :

pass wj to Naïve Bayes input (output vj)

vj =

1, for “positive” words

−1, for “negative” words

vi = vi + vj

RNB = RNB ∪ {NBsenti, vi}, NBsenti =

“positive′′, if vi ≥ 0

“negative′′, if vi < 0

3. Results are combined as following:

(a) Find results which are the same in both SVM and Naïve Bayes classification.
Results = RSVM ∩ RNB = {x : x ∈ RSVM{SVMsent}and x ∈
RNB{NBsent}}

(b) Find results which are different between SVM and Naïve Bayes classification.
RSVM{SVMsent}∆RNB{NBsent}

(c) Find coefficient of difference for ∀(RSVM{SVMsent}∆RNB{NBsent}) , using
our proposed formula (we need to unify RNB{v} values, so we used log10 for
it):

difference = RSVM{p}+ log10 (|RNB{v}|)

(d) Find average of all coefficients of difference.

(e) for ∀differencei ∈ difference :

Results =

Results ∪RSVM , if differencei ≤ averageResults ∪RNB, if differencei > average

Output: set of classification results Results = {S, sentiment} and Accuracy (see subsect
4.3).

Algorithm for sentences This technique is applied on the whole sentence without
splitting into words.
Input: Let us denote th2 (th2 = 0.8 threshold value was manually selected for the
algorithm for sentences.) as the threshold value for RSVM{p} selection in algorithm step
(b) and th3 as the threshold to select RSVM{p} in algorithm step (c).
RSVM = {SVMsent, p} - set of SVM results obtained after performing SVM
classification; SVMsent - sentiment
p - the probability of sentence classification
RNB = {NBsent, v} - set of Naïve Bayes classification results obtained after performing
Naïve Bayes classification; NBsent - sentiment
v - Naïve Bayes results value, contains “1” for “positive” sentence and “-1” for “negative”
sentence
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th3 = min(RSVM{p}) +σRSV M{p}/2− 0.01 (used our proposed formula), where σRSV M{p}

is the standard deviation of RSVM{p}

Algorithm for results combining is performed:

1. Find results which are the same in both SVM and Naïve Bayes classification.
Results = RSVM ∩RNB = {x : x ∈ RSVM{SVMsent}and x ∈ RNB{NBsent}}

2. Find results which are different between SVM and Naïve Bayes classification.
RSVM{SVMsent}∆RNB{NBsent} and RSVM{p} < th2

3. Results =

Results ∪RSVM , if |RSVM{p}| < th3

Results ∪RNB, if |RSVM{p}| ≥ th3

Output: set of classification results Results = {S, sentiment} and Accuracy (Korovkinas
et al. in [KDG17]).

In paper Korovkinas and Garšva [KG18], we modified this algorithm for using it
with different machine learning algorithms. This algorithm is presented below.

Algorithm for combining results
Input: Let us denote ML1 as the strongest classifier and ML2 as the weakest

classifier.
RML1 = {ML1_sent, p} - set of the first algorithm results, obtained after performing

machine learning algorithm ML1 classification; ML1_sent - sentiment
p - the probability of classification
RML2 = {ML2_sent, v} - set of the second machine learning ML2 classification

results obtained after performing ML2; ML2_sent - sentiment
v - ML2 results value, contains “positive” or “negative” sentiment
th2 = 0.8. The threshold value was selected by manually investigating the results.
th3 = min(RML1{p}) + (σRML1{p} \ 2) − 0.01 (used our proposed formula), where

σRML1{p} is the standard deviation of RML1{p}

Algorithm for results combining:

1. Find results which are the same in both ML1 and ML2.
Results = RML1∩RML2 = {x : x ∈ RML1{ML1_sent} and x ∈ RML2{ML2_sent}}

2. Find results which are different between ML1 and ML2.
RML1{ML1_sent}∆RML2{ML2_sent} and
RML1{p} < th2

3. Results =

Results ∪RML1, if |RML1{p}| < th3

Results ∪RML2, if |RML1{p}| ≥ th333
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Figure 8: Proposed method

Output: set of classification results Results = {S, sentiment} and Accuracy (Korovkinas
and Garšva in [KG18]).

As was mentioned in chapter 2 “Review of existing techniques and problem
domain”, SVM has slow performance with large scale datasets - big data arrays. In
paper [KDG18] we presented the method to improve the speed of SVM classification in
sentiment analysis by reducing the training set. The method is based on selection of the
training data size subject to the subset of split testing data. Thus, the testing data is split
into equal subsets and training data size is calculated on the basis of the size of the first
subset. It is assumed that the testing subset is 30%, therefore, the training data should be
70%. “Results” is the final results set with the following classified sentiment: “positive”
or “negative”. The diagram (see Fig. 3.2) and algorithm of the proposed method are
presented below.

Algorithm
Input: Posdata – set of positive sentiments for training;
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Negdata – set of negative sentiments for training;
td – set of testing data subsets;
Subsetsize – size of testing data subset is divided into;
Dtrain – set of training data;
Dtest – set of testing data;
Traincount – count of sentiments should be selected from Posdata and Negdata sets. This
value is calculated by formula:
Traincount = ((Subsetsize/2) ∗ (trainsize/testsize)))). Subsetsize is divided by 2, because
we need to select equal parts from Posdata and Negdata sets;
POStrain – set of randomly selected sentiments from Posdata set;
NEGtrain – set of randomly selected sentiments from Negdata set;
RSVM = {SVMsent} – set of SVM results, SVMsent – sentiment;

RSVM = {}
Dtrain = {}
POStrain = (random.sample(Posdata, T raincount))

NEGtrain = (random.sample(Negdata, T raincount))

Dtrain = POStrain ∪NEGtrain

train SVM with Dtrain

n = 0;
for i = 1 : trunc(len(Dtest)/Subsetsize)

tdi = Dtest[(n+ 1) : (Subsetsize ∗ i), ]
pass tdi to SVM input (output SVMsenti)
RSVM = RSVM ∪ {SVMsenti}
n = (Subsetsize ∗ i)

if (len(Dtest) % Subsetsize) > 0

tdi+1 = Dtest[(n+ 1) : (len(Dtest), ]

pass tdi+1 to SVM input (output SVMsenti+1)
RSVM = RSVM ∪ {SVMsenti+1}

Output: set of classification results Results = {sentiment}

3.2 Conclusions

In this section is presented the proposed hybrid method for sentiment polarity
classification, its diagram, pseudo code. The method contains 5 main parts: selecting
of representative dataset, features extracting, SVM parameter tuning, SVM speed-up
technique, combination Naïve Bayes and SVM results.
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4 Experimental research

4.1 Dataset

In this thesis are used existing datasets: “A list of English positive and negative opinion
words or sentiment words” 5, Movie Review (polarity dataset v2.0 6), the Stanford Twitter
sentiment corpus dataset7 and Amazon customer reviews dataset8.

“A list of English positive and negative opinion words or sentiment words”, was compiled
by authors Hu and Liu in [HL04]. It is actually a list of opinion lexicon. List of
positive words contains 2006 words and negative list contains 4783 words. We add
additional column in this list, which named “Sentiment”. This column contains two
values: “positive” for positive words list and “negative” for negative words list. After
we combine these two lists in to one. The prepared training dataset contains 6789 words.

Movie Review dataset, was created by Pang and Lee in [PL04] and contains 1000
positive and 1000 negative processed reviews. Dataset was splitted into training data
(70%), which was used in second experiment as the training dataset (1400 movie reviews)
and testing data (30%).

The Stanford Twitter sentiment corpus dataset is introduced by Go et al. in [GBH09]
and contains 1.6 million tweets automatically labeled as positive or negative based on
emotions. The dataset is splitted in training dataset (560K positive and 560K negative
tweets, in total 1.12M tweets) and testing dataset (480K tweets). Amazon customer
reviews dataset contains 4 million reviews and star ratings. The dataset is splitted into
training dataset (1.4M positive and 1.4M negative reviews, in total 2.8M reviews) and
testing dataset (1.2M reviews).

Training and testing data has been preprocessed and has been cleaned before it was
passed as the input of SVM algorithm. It included removing redundant tokens such as
hashtag symbols @, numbers, “http” for links, punctuation symbols, etc. After cleaning
was performed all datasets were checked and empty strings were removed.

4.2 Experiments

Number of experiments are performed with aforementioned datasets.
In the first four experiment was used “A list of English positive and negative opinion

words or sentiment words”, Movie Reviews dataset, Stanford Twitter sentiment corpus
dataset (sentiment140) and Amazon customer reviews dataset (Amazon reviews). After
the results are compared with results when was used standalone machine learning
algorithms NB and SVM.

5https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html
6http://www.cs.cornell.edu/people/pabo/movie-review-data/
7http://help.sentiment140.com/
8https://www.kaggle.com/bittlingmayer/amazonreviews/
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For the first experiment training, we used dataset “A list of English positive and negative
opinion words or sentiment words”, which contains 6789 words (see subsec 4.1).

The dataset for testing was used Movie review dataset. Dataset was splitted into
training data (70%), which was used in second experiment as the training dataset (1400
movie reviews) and testing data (30%). We used the same testing dataset (600 movie
reviews) in first and the second experiments.

For the third experiment was used The Stanford Twitter sentiment corpus dataset,
which contains 50K positive and 50K negative (total 100K) randomly selected tweets.
The dataset was splitted into training (70%) and testing (30%) datasets.

For the fourth experiment was used Amazon customer reviews dataset, which
contains 200K positive and 200K negative (total 400K) randomly selected reviews. The
dataset was splitted into training (70%) and testing (30%) datasets.

Experimental settings for aforementioned experiments are presented in Table 4.1 (see
section 4.3).

Another four experiments were performed to evaluate and compare the proposed
method with combination of various classifiers. In first two experiments we compared
four standalone classifiers and applied them on stanford140 and Amazon reviews
dataset. In the third and fourth experiments the best three machine learning algorithms
are selected, depending on results of the previous experiments, for the creating various
combinations of two different single methods and apply them on aforementioned
datasets. For experiments were used: Logistic Regression, Naïve Bayes classification,
Support Vector Machines and Random Forest algorithms. Datasets were splitted into
70% for training and 30% for testing (see Table 4.2).

To evaluate the SVM speed performance, another ten experiments are performed
in this thesis: five experiments with the Stanford Twitter sentiment corpus dataset
(sentiment140) and five experiments with Amazon customer reviews dataset (Amazon
reviews).

Original linear SVM technique is used in the first and the second experiments, using
typical split into 70% for training and 30% for testing, and applying it to the Stanford
Twitter sentiment corpus dataset and to Amazon customer reviews dataset. The main
goal of the aforementioned experiments is to compare the efficiency of an ordinary SVM
technique and our proposed method, which is applied in the further experiments of this
thesis.

In the third and seventh experiments, the testing data is used from the first
(480K tweets) and second experiments (1.2M reviews). Furthemore, it is divided into
subsets, which contain 30K rows of a dataset. The last subset contains the remainder
after division, if the testing dataset cannot be divided into equal subsets without the
remainder. Similar splitting into subsets is used in other experiments, using different size
of subsets: 60K rows of a dataset are used in the fourth and eight experiments; in the
fifth and ninth experiments – 120K rows of a dataset; in the sixth and tenth experiments
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– 180K rows of a dataset.
It is important to note that all experiments are performed 20 times to get more

accurate results; the MIN, the MAX and the average are taken as the final results. Training
data is calculated subject to the subset of testing data as it is described in the proposed
method (see subsec 2.2) and new training set is randomly selected for each experiment
and for each execution time.

Detailed experimental settings are presented in Table 4.2 and Table 4.3.

4.3 Experimental settings

Data cleaning, preparing and the experiments are implemented with Python
programming language and scikit-learn [PVG+11]: library for machine learning.

Machine learning algorithms are used with their default parameters. They are
described below.

Logistic Regression default parameters [PVG+11]:

• C (Inverse of regularization strength): float, default: 1.0.
• dual (Dual or primal formulation): bool, default: False
• fit_intercept (Specifies if a constant should be added to the decision function): bool,

default: True
• intercept_scaling: float, default 1
• max_iter(Maximum number of iterations taken for the solvers to converge): int,

default: 100
• multi_class: str, default: ’ovr’. With ’ovr’ a binary problem is fit for each label.
• n_jobs (Number of CPU cores used when parallelizing over classes if

multi_class=’ovr’): int, default: 1
• penalty (Used to specify the norm used in the penalization): str, ’l1’ or ’l2’, default:

’l2’
• solver (Algorithm to use in the optimization problem): ’newton-cg’, ’lbfgs’,

’liblinear’, ’sag’, ’saga’, default: ’liblinear’.
• tol (Tolerance for stopping criteria): float, default: 0.0001

Naïve Bayes default parameters [PVG+11]:

• alpha (Additive (Laplace/Lidstone) smoothing parameter (0 for no smoothing)):
float, optional (default=1.0)
• fit_prior (Whether to learn class prior probabilities or not): boolean, optional

(default=True)
• class_prior (Prior probabilities of the classes): array-like, size (n_classes), optional

(default=None)

Random Forest default parameters [PVG+11]:

38



• n_estimators (The number of trees in the forest): integer, optional (default=10)
• max_features (The number of features to consider when looking for the best split):

int, float, string or None, optional (default="auto")
• max_depth (The maximum depth of the tree): integer or None, optional

(default=None)
• min_samples_split (The minimum number of samples required to split an internal

node): int, float, optional (default=2)
• min_samples_leaf (The minimum number of samples required to be at a leaf node):

int, float, optional (default=1)
• min_weight_fraction_leaf (The minimum weighted fraction of the sum total of

weights (of all the input samples) required to be at a leaf node): float, optional
(default=0.0)
• max_leaf_nodes (Grow trees with max_leaf_nodes in best-first fashion. Best nodes are

defined as relative reduction in impurity): int or None, optional (default=None)
• min_impurity_decrease (A node will be split if this split induces a decrease of the

impurity greater than or equal to this value): float, optional (default=0.0)
• bootstrap (Whether bootstrap samples are used when building trees): boolean,

optional (default=True)
• oob_score (Whether to use out-of-bag samples to estimate the generalization

accuracy): bool (default=False)
• n_jobs (The number of jobs to run in parallel for both fit and predict): integer,

optional (default=1)
• verbose (Controls the verbosity of the tree building process): int, optional (default=0)
• warm_start : bool, optional (default=False)
• criterion (The function to measure the quality of a split): string, optional

(default="gini")

In the case of SVM, was used LinearSVC module for SVM classification with this
default parameters (all parameters are selected as they are in LinearSVC module). It is
similar to SVC (implementation of conventional SVM) with parameter kernel=“linear”,
but implemented in terms of LibLinear (A Library for Large Linear Classification 9)
rather than LibSVM (A Library for Support Vector Machines 10), so it has more flexibility
in the choice of penalties and loss functions and should scale better to large numbers of
samples [PVG+11]. The main goal of this research is to compare training speed between
our method and ordinary SVM on equal terms, consequently we don’t need to change
values of SVM parameters, cause it is enough to compare accuracy of methods obtained
with default parameters.

9https://www.csie.ntu.edu.tw/~cjlin/liblinear/
10https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Table 2: Experimental settings

Exp Training Training Testing Testing
No. features dataset features dataset

1 words 6789 movie reviews 600
2 movie reviews (70%) 1400 movie reviews (30%) 600
3 tweets (70%) 70000 tweets (30%) 30000
4 Amazon Reviews (70%) 280000 Amazon Reviews (30%) 120000

Table 3: Typical dataset split

Exp. Dataset Training data Testing data
No. 70% 30%

1 sentiment140 1.12M 480K
2 Amazon reviews 2.8M 1.2M

Support Vector Machines parameters:

• kernel: linear.
• C (Penalty parameter of the error term. It is the only parameter for linear

classification.). Type: float, optional (default=1.0) [PVG+11]

Table 4: Experimental settings for proposed method

Exp. Dataset Testing Subset Subsets Remainder Calculated
No. data size size quantity (SQ) TDs-(SubS*SQ) training data

(TDs) (SubS) trunc(TDs/Ss) dependently
on SubS

3 sentiment 480K 30K 16 0 70K
4 140 480K 60K 8 0 140K
5 480K 120K 4 0 280K
6 480K 180K 2 120K 420K

7 Amazon 1.2M 30K 40 0 70K
8 reviews 1.2M 60K 20 0 140K
9 1.2M 120K 10 0 280K
10 1.2M 180K 6 120K 420K

For experiments is used computer with processor Intel(R) Core(TM) i7-4712MQ CPU
@ 2.30 GHz and 16.00 GB installed memory (RAM).

4.4 Effectiveness

Effectiveness is measured using statistical measures: accuracy (ACC), precision (PPV -
positive predictive value and NPV - negative predictive value), recall (TPR - true positive
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rate and TNR - true negative rate) and F1 (Harmonic mean of PPV and TPR). Formulas
are presented below (Sammut and Webb in [SW11]):
Accuracy (ACC):

ACC =
TP + TN

TP + TN + FP + FN

Positive predictive value (PPV):

PPV =
TP

TP + FP

Negative predictive value (NPV):

NPV =
TN

TN + FN

True positive rate (TPR):

TPR =
TP

TP + FN

True negative rate (TNR):

TNR =
TN

TN + FP

Harmonic mean of PPV and TPR (F1):

F1 =
2

1
PPV + 1

TPR

where TP - count of correctly classified “positive” sentiments, TN - count of
correctly classified “negative” sentiments. FP - count of incorrectly classified “positive”
sentiments. FN - count of incorrectly classified “negative” sentiments.

4.5 Results

Table 4.4 shows that the best results we got in forth experiment when was recognizing
Amazon reviews sentiments. Our introduced method gave accuracy (ACC) 89,19%,
while accuracy of SVM (ACC) was 89,05% and Naïve Bayes (ACC) 84,35 %. Not far away
from the best results is the second experiment when was recognizing movie reviews with
accuracy (ACC): our introduced method 88,66 %, SVM 88,50 % and Naïve Bayes 81,67
%. The first experiment where was used a list of English positive and negative opinion
words or sentiment “A list of English positive and negative opinion words or sentiment words”
for recognize movie reviews, showed the lowest recognize accuracy, but our introduced
method still outperform SVM and Naïve Bayes and gave accuracy (ACC) 72,00%. To
compare the first and the second experiments, where was used the same testing dataset,
we found that the better accuracy is obtained when the sentences is not tokenized and
the training dataset is from the same domain. In third experiment, when was recognizing
sentiments from tweets, our introduced method shown accuracy (ACC) 78,31% and again
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outperform SVM with accuracy (ACC) 78,08 % and Naïve Bayes with accuracy 75,77 %.
As we can see the best results are when recognizing movie reviews and Amazon reviews,
the results of tweets recognizing is not very high, but still good enough if we don’t need a
very high accuracy. This happen because tweets are very short and tweets contain noises,
slangs, acronyms and etc.

To compare with SVM and Naïve Bayes classification, our introduced method
provided more uniform recognition of both classes (exept the first experiment where we
gave almost the same), compared to other methods. PPV,NPV, TPR, TNR,F1score,
are almost even in our introduced method, while Naïve Bayes have spread from 76,33%
till 87,00% in second experiment, from 70,75% till 80,79% in third experiment and from
79,96% till 88,75% in fourth experiment. It can be indicated that Naïve Bayes classifier
performed weekly in all experiments, but its combination with stronger classifier, such as
SVM, can improve performance of the latter.

Results suggest that training and testing datasets should come from the same
domain, which limits the direct transfer of the pretrained classifier to other domains.
Also, Naïve Bayes classifier did not perform well while recognizing sentiments in all
experiments to compare with SVM and our introduced method.

Fig. 4.1 – 4.4 graphically depict the results of the accuracy and F1score. In Fig. 4.5 –
4.8 – the results of PPV, NPV, TPR, TNR.

Table 5: Results

Classifiers ACC PPV NPV TPR TNR F1score

Experiment 1

SVM 71,33% 64,33% 78,33% 74,81% 68,71% 69,16%
Naïve Bayes classification 67,83% 71,67% 64,00% 66,56% 69,31% 69,02%
Our introduced method 72,00% 65,67% 78,33% 75,19% 69,53% 70,11%
Experiment 2

SVM 88,50% 89,67% 87,33% 87,62% 89,42% 88,63%
Naïve Bayes classification 81,67% 76,33% 87,00% 85,45% 78,61% 80,63%
Our introduced method 88,66% 90,00% 87,33% 87,66% 89,73% 88,82%
Experiment 3

SVM 78,08% 78,74% 77,43% 77,72% 78,46% 78,23%
Naïve Bayes classification 75,77% 70,75% 80,79% 78,65% 73,42% 74,49%
Our introduced method 78,31% 77,82% 78,80% 78,59% 78,04% 78,20%
Experiment 4

SVM 89,05% 88,11% 89,99% 89,80% 88,33% 88,95%
Naïve Bayes classification 84,35% 79,96% 88,75% 87,66% 81,58% 83,64%
Our introduced method 89,19% 88,10% 90,32% 90,10% 88,33% 89,07%
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Table 4.5 contains the second results of standard single machine learning algorithms
with their default parameters. Results show that Logistic Regression (LR) obtained
the best accuracy (ACC) in both experiments 79,67% and 90,21%. Other methods
are arranged in the following order: SVM (ACC) - 79,16% and 90,00%, Naïve Bayes
classification (ACC) - 76,72% and 84,18%, Random Forest (ACC) - 75,81% and 80,15%.

Table 6: the single methods experiment results

Classifiers ACC PPV NPV TPR TNR F1score

Experiment 1

LR 79,67% 80,19% 79,16% 79,38% 79,98% 79,78%
NB 76,72% 73,18% 80,26% 78,76% 74,95% 75,87%
SVM 79,16% 79,49% 78,82% 78,97% 79,35% 79,23%
RF 75,81% 70,12% 81,49% 79,13% 73,17% 74,35%
Experiment 2

LR 90,21% 90,19% 90,24% 90,24% 90,19% 90,21%
NB 84,18% 81,46% 86,89% 86,14% 82,42% 83,74%
SVM 90,00% 90,03% 89,98% 89,98% 90,03% 90,01%
RF 80,15% 73,05% 87,25% 85,14% 76,40% 78,63%

The better accuracy obtained when was used Amazon reviews dataset, while it
significantly bigger than sentiment140 dataset. This happened because tweets are very
short, contain noises, slangs, acronyms and etc.

Logistic Regression and SVM provided more uniform recognition of both classes;
PPV, NPV, TPR, TNR, F1, are almost even, compared to other methods.

Depending on results presented in Table 4.5, for the further experiments were
selected Logistic Regression, SVM and Naïve Bayes. Various combinations of two
different single algorithms were performed in these experiments.

Table 4.6 shows that using proposed method for combination of two single methods,
let us to obtain the better accuracy to compare with a single method.

LR-SVM (Logistic Regression and SVM combination) shows the better accuracy
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Table 7: the single methods experiment results

Classifiers ACC PPV NPV TPR TNR F1score

Experiment 1

LR-NB 79,81% 79,49% 80,12% 80,00% 79,62% 79,75%
SVM-NB 79,26% 78,01% 80,51% 80,02% 78,54% 78,99%
LR-SVM 81,83% 79,98% 83,69% 83,06% 80,69% 81,49%
Experiment 2

LR-NB 90,22% 90,06% 90,37% 90,34% 90,09% 90,20%
SVM-NB 89,98% 89,81% 90,15% 90,12% 89,84% 89,96%
LR-SVM 90,22% 90,22% 90,21% 90,21% 90,22% 90,22%

(ACC) 81,83% and 90,22%, while (ACC) of other combinations are smaller: LR-NB
(Logistic Regression and Naïve Bayes combination) - 79,81% and 90,22%, SVM-NB (SVM
and Naïve Bayes combination) - 79,26% and 89,98%. Our introduced method also
outperformed single LR algorithm in all experiments, except the fourth experiment where
SVM-NB obtained accuracy (ACC) 89,98% to compare with Logistic Regression 90,21%.

Our method also provided more uniform recognition of both classes PPV, NPV, TPR,
TNR, F1.
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The results of an ordinary SVM technique (see Table 4.7) revealed that in case
of sentiment140 dataset the execution time average for is 407,26 sec., meanwhile the
accuracy (ACC) average is 79,10%. While referring to Amazon customer reviews dataset,
the execution time average is 1031,64 sec. and the accuracy (ACC) average is 89,44%.

Table 8: Results of ordinary SVM technique, using typical dataset split

Dataset Function time (sec) ACC PPV NPV TPR TNR F1score

sentiment140 MIN 372,79 79,09% 78,81% 79,31% 79,46% 78,59% 79,17%
MAX 464,71 79,11% 78,89% 79,38% 79,59% 78,72% 79,21%
AVG 407,26 79,10% 78,84% 79,36% 79,56% 78,64% 79,20%

Amazon MIN 1004,93 89,30% 91,49% 86,74% 85,81% 91,89% 88,91%
reviews MAX 1053,14 89,62% 92,31% 87,85% 87,28% 92,85% 89,37%

AVG 1031,64 89,44% 91,97% 87,21% 86,44% 92,45% 89,11%

Table 4 shows the results of the proposed method for the sentiment140 dataset.
Average execution time of our method ranges from 7,47 sec. to 51,44 sec. Therefore, it
outperforms an ordinary SVM technique with the average of 407,26 sec.; however, the
accuracy (ACC) average of our method ranges from 76,87% to 78,55% and is slightly
lower than the ordinary SVM technique (ACC 79,10%). Moreover, the results clearly
demonstrate that the performance in terms of PPV, NPV, TPR, TNR, F1score is very similar
in all experiments.

Table 9: Results of the proposed method applied on the Stanford Twitter sentiment corpus
dataset

Subset Function time (sec) ACC PPV NPV TPR TNR F1score

30K MIN 7,39 76,72% 76,44% 76,92% 76,96% 76,17% 76,85%
MAX 7,67 77,03% 76,89% 77,39% 77,75% 76,86% 77,16%
AVG 7,47 76,87% 76,66% 77,10% 77,30% 76,45% 76,98%

60K MIN 10,06 77,52% 77,21% 77,70% 77,86% 76,89% 77,59%
MAX 10,86 77,69% 77,54% 78,00% 78,30% 77,42% 77,79%
AVG 10,19 77,61% 77,36% 77,86% 78,08% 77,14% 77,72%

120K MIN 21,27 78,08% 77,77% 78,37% 78,49% 77,51% 78,20%
MAX 25,78 78,35% 78,13% 78,65% 78,91% 77,96% 78,46%
AVG 23,28 78,23% 77,97% 78,50% 78,70% 77,76% 78,34%

180K MIN 47,73 78,47% 78,22% 78,69% 78,86% 77,96% 78,56%
MAX 55,28 78,62% 78,37% 78,95% 79,20% 78,21% 78,74%
AVG 51,44 78,55% 78,29% 78,82% 79,02% 78,08% 78,65%

Table 4.8 presents the results for Amazon customer reviews dataset. From here, it is
evident that the proposed method again shows very good execution time: the average
from 67,17 sec. to 105,08 sec. while it took 1031,64 sec. for ordinary SVM. The accuracy
(ACC) average from 87,63% to 89,09% was slightly smaller than in case of an ordinary
SVM method with the average of 89,44%. The performance in terms of PPV, NPV, TPR,
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TNR, F1score is almost identical in all experiments.

Table 10: Results of the proposed method applied on Amazon customer reviews dataset

Subset Function time (sec) ACC PPV NPV TPR TNR F1score

30K MIN 65,41 87,55% 87,55% 87,33% 87,24% 87,54% 87,55%
MAX 70,02 87,70% 87,91% 87,71% 87,73% 88,01% 87,68%
AVG 67,17 87,63% 87,70% 87,57% 87,55% 87,72% 87,62%

60K MIN 71,67 88,21% 88,19% 88,16% 88,14% 88,17% 88,20%
MAX 75,24 88,34% 88,39% 88,37% 88,39% 88,42% 88,33%
AVG 73,73 88,27% 88,28% 88,25% 88,25% 88,29% 88,27%

120K MIN 85,31 88,79% 88,78% 88,73% 88,71% 88,77% 88,79%
MAX 97,50 88,86% 88,93% 88,86% 88,87% 88,96% 88,85%
AVG 88,54 88,82% 88,85% 88,79% 88,79% 88,85% 88,81%

180K MIN 102,96 89,06% 89,00% 88,99% 88,98% 88,99% 89,06%
MAX 109,63 89,12% 89,17% 89,12% 89,14% 89,19% 89,12%
AVG 105,08 89,09% 89,11% 89,07% 89,06% 89,11% 89,08%

Fig. 4.13 and Fig. 4.14 graphically depict the results of the accuracy and F1score. In
Fig. 4.15 and Fig. 4.16 – the results of PPV, NPV, TPR, TNR. When Amazon customer
reviews dataset was used, our method performed better with higher NPV and TPR (see
Fig. 4.16).

Accuracy F1score

76.5

77

77.5

78

78.5

79

79.5

Pe
rc

en
ta

ge
(%

)

30K 60K 120K 180K Ordinary SVM

Figure 21: sentiment140 results

Accuracy F1score

87.5

88

88.5

89

89.5

90

Figure 22: Amazon reviews results

PPV NPV TPR TNR

76

77

78

79

80

Pe
rc

en
ta

ge
(%

)

30K 60K 120K 180K Ordinary SVM

Figure 23: sentiment140 results

PPV NPV TPR TNR

86

88

90

92

Figure 24: Amazon reviews results
47



sentiment140 Amazon reviews
0

20

40

60

80

100

7.47

67.17

10.19

73.73

23.28

88.54

51.44

105.08

407.26 1,031.64

Ex
ec

ut
io

n
ti

m
e

(s
ec

.)

30K
60K

120K
180K

Ordinary SVM

Figure 25: Execution time comparison

Fig. 4.17 compares the execution time between an ordinary SVM technique and our
method, when the Stanford Twitter sentiment corpus and Amazon customer reviews
datasets are used. It is important to conclude that the proposed technique outperformed
an ordinary SVM technique in all cases.

The achieved results are not objective in comparison with other works as different
hardware and methods (if implementations are not presented), datasets, parameters,
tasks, etc. are used.

4.6 Conclusions

Training data size has significant impact on SVM classification speed. Properly selected
features can improve executing time with no losing or similar accuracy. This thesis
proposes the method to improve SVM classification speed by reducing the training set.
The experimental results show that our method is characterized by significantly higher
speed than an ordinary SVM. Although typical use of SVM is still superior in terms of
accuracy or other tested metrics, the difference is not significant. However, the proposed
technique outperformed ordinary SVM when applied to Amazon customer reviews
dataset with higher NPV and TPR. Execution time for the Stanford Twitter sentiment
corpus dataset was 7.9-54x faster, and for Amazon customer reviews dataset – 9.8-15.35x
faster than an ordinary SVM.
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5 Conclusions

The results of our proposed hybrid method has proved its efficiency in sentiment polarity
classification tasks when large scale datasets are used.
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