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Abstract

Real world images often contain partially occluded objects of interest. For example, images
from retail store self checkout area often contain products that are covered by a customer’s
body parts, are placed inside semi-transparent plastic bags, include intensive glare, or some
combination of these. The more occluded an object of interest is - the more challenging
the recognition task. In order to categorize objects of interest in images with partially
occluded objects, the first step is to decide if an image contains enough information about
the object of interest in order to be categorized.
The most famous computer vision datasets - such as Imagenet, CIFAR, MNIST - are made
of images that contain clearly distinctive objects and are labelled with binary information
about level of occlusion: either an object of interest exists in the image and is clearly
visible, or not. Such binary labels are not fit for solving the recognition task of object
occlusion level.
In this study authors aim to categorize images into [not] containing enough information
about objects of interest in order to be categorized. Authors analyze a dataset collected
in a real retail store self checkout area where objects of interest are various products. The
proposed method uses 6 categories of occlusion variously grouped.
Authors received <0.4 entropy in our best model separating images into visible/invisible
categories. The proposed method is practical in applications aiming to separate out images
with [not] enough information about objects of interest.
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1 Introduction

Self checkout context and issues
Self checkout machines were introduced in retail stores as a means to reduce need of
cashiers and to shorten customer checkout time. However, self checkouts raised new
problems to retailers: theft and long selection time of barcode-less products. Malignant
customers use self checkouts in a variety of ways: they replace barcodes of expensive
products with barcodes of cheaper ones, intentionally pick cheaper products from pick
list menu. Benign customers suffer longer checkout times due to having to pick each
barcode-less product from picklist menu that contains many similar products, has a
hierarchical structure of 3-5 levels. Complex picklist menu often results in unintentional
selection of wrong products and need for staff assistance. Retail industry badly needs to
solve these problems. Successful solutions would simplify product selection from picklist
menu and raise alerts upon scanning/selecting incorrect products. In this research authors
analyze a computer vision based approach to recognize products that could address each
of the mentioned issues.

Self checkout process
Table 1 shows the flow of products movement during self checkout process. A customer
brings a shopping basket (left in the picture) or a trolley full of products to be purchased to
the checkout area. Then she takes one product at a time from a basket/trolley registers it
in one of two ways: scans (products with barcode stickers - e.g. milk packs) or picks from
a menu (barcode-less products - e.g. fruits). Scanner is usually located under the glass
(green rectangle in the picture) and/or behind a glass in front of the customer (above the
green rectangle in the picture). A picklist menu to select barcode-less products is displayed
on a touch screen in front of the customer (above the green rectangle in the picture - not
shown). Upon picking a barcode-less product from a menu, it is weighed by scales (green
rectangle in the picture). Finally, when product is registered, a customer moves it to the
bagging area.

Self checkout data collection challenges
Scanner/scales area (green frame in Table 1) usually contains a single product, while other
areas - shopping basket, bagging - usually contain more. Self checkouts register events:
scanning of a barcode, weighing a picked from menu barcode-less product. Both at time
time of scanning and weighing, a product is contained in the green frame. Thus, it was
possible to take photos at the moment of scanning/weighing and label them with product
ID.
It is a much more complex task to recognize individual products in shopping basket, bag-
ging area - since multiple products are placed there. In terms of computer vision, this
would be an object detection task that requires labels with product location bounding
boxes. Authors refrain from detection task in basket and bagging areas in this research,
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Shopping basket,
é

Scanner/sales area,
é

Bagging area,
multiple products single product multiple products

(area of research)

Table 1: Checkout flow

although solving it has a variety of applications.
State of the art in computer vision
Convolutional neural networks like (Simonyan and Zisserman, 2015), (He et al., 2016)
achieve impressive results on image classification task. Convolutional filters extract rele-
vant object features as shown in (Zeiler and Fergus, 2014), then grouped by dense layers to
decide on object class. However, most benchmark datasets (ImageNet, CIFAR[-10|-100],
MNIST) only include images where visibility of objects of interest is binary: only images
will clearly visible and distinctive objects are included.
The gap and focus of this research
Real life images, which need to be classified, often contain objects that are occluded to
some degree. For example, most self checkout images contain products partially covered
by a customer’s hand or other body part; about 15% of barcode-less products are sold
in plastic bags that are semi-transparent; specific locations within the scales area reflect
light in a way that reduces recongizability. Since images with more occluded objects are
likely to contain less information about the object of interest, simply applying classifica-
tion techniques on images with occluded objects is likely to result in lower classification
metrics. In order to keep satisfactory classification metrics, images with occluded objects
must be decided on wheather objects of interest are visible enough for classification.
In this study authors propose a way to classify images with occluded objects of interest
into visibility categories. The main criteria evaluated is how well images with similarly
occluded objects are classified into a same visibility category. Authors aim to show that
object occlusion level can be measured with low entropy.

DMSTI-DS-N009-20-12 5



Moment of +0.2sec +0.4sec +0.6sec +0.8secscanning/picking

Table 2: Time sequence of scanned (top row) and picked (bottom row) products

1.1 Self checkout image specifics

Self checkout image crops of scanner area taken by an overhead camera have certain
specifics:

• Products covered by hand or other body part

• Products packed in plastic bags

• Products of different size

• Static background

• Illumination differences

Products covered by a body part Products with barcodes are usually held in
customer’s hand at the moment of scanning, then moved to the bagging area. In Table 2
top row, the left frames represent the moment of barcode scanning, and a frame to the
right shows +0.2 second increment from it’s left neighour. Depending on the position
of a barcode on a product, the moment of scanning may not contain enough product
information, like the upper left frame in the sample figure. Later frames (4-5 in shown
sample) may have a product completely removed.
Barcode-less products are picked from a touch screen menu after being placed on
the scales. At a self checkout’s event of picking an item, a customer’s hand (and
sometimes head) usually covers a part of a product placed on the scales as shown in
Table 2 bottom row, left frames. Then a customer usually lowers an arm, thus un-
covering a bigger part of a product (frames 2-4), then moves a product to the bagging area.
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Figure 1: Bananas: unpacked, in a plastic bag, in a plastic bag with high reflection

Figure 2: Products vary in size

Products in plastic bags Approximately 15% images contain products packed in
transparent plastic bags (excl. original producer packing). While sometimes products in
bags are recognizable, other times plastic bags reflect light in a way that makes products
not visually recognizable, as shown in Figure 1 right frame.

Products of different size Products vary greatly in size as shown in Figure 2. Thus
images will smaller products carry less information about the product of interest and more
about the background.

Illumination differences Illumination differences occur between different self check-
out instances, at different times of day , in different self checkout zones (Table 3).

2 Literature review

Recent advances in covered object recognition use a see-through teraherz beam such
as (Wang et al. 2019) and analyze reflection signal amplitude and phase differences in
materials. Such teraherz cameras are far from ubiquitous and will hardly ever be, and
our method uses a more widespread RGB image features.
Some publicly know datasets such as Imagenet (Deng et al. 2009), Pascal VOC (Ev-

Difference in:

Self checkout instances Times of day Illumination zones
(and zone masks)

Table 3: Illumination differences
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eringham et al. 2010) use rectangular bounding boxes as ground truth to mark object
location and size. Others use even more precise object shape markings: Caltech 101 (Li
Fei-Fei et al. 2006), LabelMe (Russell et al. 2008) use closed boundaries and MSRC (Ali
and Zafar 2018) uses pixel level segmentation. Each of the above object marking ways -
rectangular bounding boxes, closed boundary shapes, and pixel level segments - are costly
to label for new datasets. Our method only requires class labels for images, thus making
it less costly to label a new domain-specific dataset.
To extract features from images authors train convolutional filters which are class-agnostic,
but sensitive to object’s existence. Very similar concept - class-agnostic convolutional
filters on object-containing widows - was used in (Singh et al. 2018), but authors train on
full images rather than object-containing crops (due to this dataset annotation nature).
These methods generate region proposals, then extracts features from them: (Russell
et al. 2006) extracts visual words from pixel level segments, then compares to those of
known object bounding boxes; (Alexe et al. 2012) finds closed boundary shapes. Both of
the above methods imply having learnt features from a dataset annotated with object
locations, which didn’t exist in the dataset used in this research.
Most methods using datasets where object location is defined - (Singh et al. 2018),
(Cheng et al. 2019) - use IoU (intersection-over-union) to measure correctenss of object
localization. Since in this research authors didn’t use dataset with annotations of object
location, class labels (Is/Isn’t an object) were used in measuring correctness.
To evaluate models authors used entropy. Although cross entropy is more widely applied
as a loss function in classification tasks since the beginning of artificial neural networks
(Long et al., 2016) and (Krizhevsky et al., 2012), but it measures match between 2
populations; as opposed, the goal of this research is only to measure how well a single
population is grouped together.
Many researchers use entropy to create unsupervised models: (Yin et al., 2017) attempts
to maximize entropy among different image background/foreground pixels; (Kodors,
2019) and (Quinlan, 1986) try to reduce entropy when selecting next features in forming
decision tree nodes; (RIKTERS, 2019) use entropy of output by competing translation
systems in order evaluate translation quality. Although in this research the authors use
supervised models, but the goal - to group the entire population of a single category
together - lets use entropy to evaluate the models.
Entropy is widely used in signal pre-processing: (Liutvinavičienė and Kurasova, 2018)
measure entropy between audio frames in order to extract time sequences belonging to
the same syllable; (Nežerka and Trejbal, 2019) use entropy to segment images. In this
research authors settled for manual image labelling, thus making it possible to formulate
the task at hand - deciding if an image contains a visible enough object of interest - as a
classification task.
As an alternative to entropy authors could have used Gini impurity that gives similar
results (Géron, 2019).
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1st quartile (Q1) 2nd quartile (Q2) Bag

3rd quartile (Q3) 4th quartile (Q4) Bag with reflection (BagR)

Table 4: Each class samples

3 Methods

3.1 Dataset

Authors have labelled the images into 6 exclusive classes by applying these rules:

• By product visibility quartile (classes Q1–Q4) - for products not in bags

• Products in bags (class Bag) - when product can be recognized by a human

• Products in bags with reflection (class BagR) that makes a product unrecognizable

, samples of each data class are displayed in Figure 4.

The entire labelled dataset consists of 6000 images taken at the time of scanning/pick-
ing. Each image represents a different product instance (object of interest). Dataset size
was chosen such in order to contain a similar number of samples per class ( 1000) as
Imagenet dataset, where classification task was solved with high accuracy.

Classes are unbalanced as shown in Table 5. Prior to any training, authors balanced
the classes by oversampling and then augmenting underrepresented class images. Authors
used the following augmentation parameters: rotation (up to 10 degrees), shifting (up to
32 pixels), zoom (up to 10%), and horizontal flip.

Labelling images into a bigger number of product visibility quantiles would have
given us more when flexibility splitting data into Visible/Invisible categories. Considering

DMSTI-DS-N009-20-12 9



Q1 Q2 Q3 Q4 Bag BagR TOTAL
32% 22% 15% 21% 7.3% 2.6% 100%

Table 5: Image class ratios

Original Background removed Background removed after
mask opening/closing

Table 6: Background removed

a human labeller would make more mistakes if more quantiles were used, authors decided
to limit the number of visibility quantiles to four.
Images with products packed in plastic bags showed very different features from images
with unpacked products in early analysis: plastic bags are easily identifiable, but products
inside the bags - not necessarily so. Due to some images with plastic bags having light
reflection that makes product unrecognizable, authors decided to split images with plastic
bags into classes Bag (recognizable products in plastic bags) and BagR (not recognizable
to humans).

3.2 Image preprocessing

Authors used square crops of scanner/scales area as shown in Table 1.
Authors tried removing static background using (Zivkovic and Van Der Heijden, 2006)
prior to training. In order to eliminate small foreground patches and fill small foreground
mask gaps within products, authors applied morphological opening/closing on back-
ground masks. In Figure 6 authors show a sample original image, image with background
removed, and image with background removed after having opening/closing operations
applied on foreground mask.

To reduce variance in image illumination intensity, authors applied contrast limited
adaptive histogram equalization (Zuiderveld, 1994) on HSV "V" channel. In Figure 7
authors show a sample image and contrast limited adaptive histogram equalization applied.
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Original CLAHE applied

Table 7: Contrast limited adaptive histogram equalization

3.3 Architecture

Authors experimented with classical convolutional neural network architecture
(Krizhevsky et al., 2012) by using 1–8 convolutional and 1–3 fully connected layers. Start-
ing with one layer of each type, authors added layers until training accuracy saturated.
The best validation accuracy was achieved by using 7 convolutional and 3 dense layer
architecture. Authors used convolutional filter size 3x3 - experiments of filter size 5x5,
7x7 showed worse results. Adding batch normalization layers (Ioffe and Szegedy, 2015)
after each convolutional and dense generally improved both training and validation accu-
racy. Adding dropout (Srivastava et al., 2014) after all dense layers helped. Adding L2
regularization helped only after the last dense layer.

3.4 Model training

Authors used dynamic augmentation parameters on training and validation data: rotation
(up to 10 degrees), shifting (up to 32 pixels), zoom (up to 10%), and horizontal flip (50%
probability). Eliminating either augmentation parameter or reducing parameter range
worsened validation accuracy. Increasing augmentation parameter range by 50% made
training accuracy bellow 85%. Removing augmentation just for validation set did not
affect accuracy.
Authors stopped training models after validation accuracy did not improve for the last 20
epochs, then reverted parameters to the best epoch’s. Additionally training some trained
models by halving learning rate generally improved validation accuracy.

3.5 Experiments

Authors mixed data labels in all possible ways into [Visible; Invisible] categories as shown
in Figure 3 with the following restrictions:

• Q1 always Invisible;

• Q4 always Visible;

DMSTI-DS-N009-20-12 11



Figure 3: Data labels grouping strategy

• Q3 can only be Invisible if Q2 is not Visible;

• Q2 can only be Visible if Q3 is not Invisible;

• Bag can only be Invisible if BagR is not Visible;

• BagR can only be Visible if Bag is not Invisible.

In all experiments authors used the same number of samples: undersampled data when
model category Visible; Invisible contained more the a single label [Q1-Q4,Bag,BagR].

4 Results

Quality of models was evaluated in terms of how well it separates instances of some label
Q1-Q4, Bag, BagR into a single category Visible; Invisible: a perfect model would assign
all samples of the same label to the same category.
Authors used entropy ( 1 ) to measure how well a certain label’s test data is assigned
into a single model category [Visible; Invisible]. To evaluate models, authors summarized
single label entropies into mean weighted entropy of an entire model.

Entropy:

Hl(X) = −
C∑

c=1
pc(Xl) log pc(Xl), (1)

where:

• l ⊆ [Q1; Q2; Q3; Q4; Bag; BagR] - a data label,

• pc(Xl) - a frequentist probability for a datapoint Xl to be assigned to category c,

DMSTI-DS-N009-20-12 12



Figure 4: Entropy measurement for each data label

Data Label Labels in category EntropyVisible Invisible
Q1 Q3, Q4 Q1 0.087
Q2 Q4, Bag, BagR Q1, Q2, Q3 0.213
Q3 Q3, Q4 Q1, Bag, BagR 0.249
Q4 Q2, Q4 Q1 0.149
Bag Q2, Q3, Q4, Bag, BagR Q1 0.382

BagR Q4, BagR Q1 0.449

Table 8: Least entropy models for each label

• C = [V isible; Invisible] - model categories.

Authors left out of scope of this research to evaluate how accurately objects of interest
can be classified in intermediate label images (Q2, Q3, Bag, BagR); however, in order to
be useful, model has to split higher vs. lower visibility labels. Authors only report results
of "useful" models.

In order to measure entropy of a model for a certain data label, authors fed the entire
test set’s data of that label into the model, then calculated frequentist probability, as
shown in Figure 4.

In table 8 authors present the least entropy models for each data label and their en-
tropies. Higher entropy for less represented data labels (BagR, Bag) and lower entropy got
more represented label (Q1) strongly suggests collecting more data for underrepresented
labels might help.

Table 9 shows the least mean entropy models for all data labels. The main metric
for practical applications - weighted mean entropy <0.4 - suggests that >92% of a label’s
data will be split into the same category of [Visible;Invisible].

Mean type Labels in category EntropyVisible Invisible
Mean Q2, Q4 Q1 0.521

Weighted mean Q4, Bag, BagR Q1, Q2, Q3 0.398

Table 9: Least mean entropy models

DMSTI-DS-N009-20-12 13



Least entropy model
for Data Label

Model metrics
Accuracy Precision Recall F1

Q1 0.713 0.981 0.477 0.642
Q2 0.773 0.815 0.330 0.469
Q3 0.814 0.727 0.960 0.828
Q4 0.858 0.889 0.863 0.876
Bag 0.856 0.908 0.881 0.894

BagR 0.828 0.949 0.625 0.754

Table 10: Least entropy model metrics

Pipeline step Technique Impact on accuracy

Balancing classes Eliminating one augmentation parameter or -3.9% – -1.7%reducing augmentation range by half

Image pre-processing

Removing static background -3.6%
Removing static background after -5.4%applying morphological operations on mask

Contrast limited adaptive histogram equalization +1.4%

Network Architecture

Convolutional filter sizes bigger (5x5, 7x7) -3.0%
Batch normalization -0.6% – +2.2%

Dropout +2.2% – +2.5%
L2 regularization +2.0%

Model training
Additional training using halved learning rate -0.1% – +5.7%
Dynamic augmentation, cutting range by half -3.4%

Dynamic augmentation, removing for validation set 0.0%

Table 11: Impact of pipeline techniques tried on validation accuracy

In Table 10 authors present accuracy, precision, recall, f1 scores of the models of least
entropy of each data label.

In Table 11 authors summarize the impact of image pre-processing techniques and
neural network architecture techniques that were applied in Methods. Impact on validation
accuracy shown is relative to the technique omitted from the pipeline.

Authors expected to find positive correlation between number of data labels in both
categories and entropy, but observed none: in Figure 5 mean weighted entropy is shown
for all experiments per number of data labels in each model category.

In Figure 6 the confusion matrix of the least mean weighted entropy model is displayed.

5 Conclusion

Authors have achieved <0.4 entropy categorizing self checkout images into containing
visible/invisible products. Our method is based on a dataset collected in a real retail
store’s self checkout area, thus having proportions of various image categories that occur
in real world. This study proposes a practical way for applications to decide if a self
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Figure 5: Mean weighted entropy

Figure 6: Confusion matrix, least weighted entropy model
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checkout image contains a product that can be classified.
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