
Vilnius University
Institute of Data Science and

Digital Technologies
L I T H U A N I A

INFORMATICS (N009)

RESEARCH AND DEVELOPMENT OF AN
OPEN SOURCE SYSTEM FOR ALGEBRAIC

MODELING LANGUAGES

Vaidas Jusevičius

October 2020

Technical Report DMSTI-DS-N009-20-05

VU Institute of Data Science and Digital Technologies, Akademijos str. 4, Vilnius
LT-08412, Lithuania

www.mii.lt

http://www.mii.lt

Abstract

In this work, we perform an extensive theoretical and experimental analysis of the char-
acteristics of five of the most prominent algebraic modeling languages (AMPL, AIMMS, GAMS,
JuMP, Pyomo), and modeling systems supporting them. In our theoretical comparison, we
evaluate how the features of the reviewed languages match with the requirements for
modern AMLs, while in the experimental analysis we use a purpose-built test model li-
brary to perform extensive benchmarks of the various AMLs. We then determine the
best performing AMLs by comparing the time needed to create model instances for spe-
cific type of optimization problems and analyze the impact that the presolve procedures
performed by various AMLs have on the actual problem-solving times. Lastly, we pro-
vide insights on which AMLs performed best and features that we deem important in the
current landscape of mathematical optimization.

Keywords: Algebraic modeling languages, Optimization, AMPL, GAMS, JuMP, Py-
omo

DMSTI-DS-N009-20-05 2

Contents

1 Introduction . 4
2 Algebraic Modeling Languages . 5

2.1 Reviewed AMLs . 5
3 Comparative Analysis of AMLs Characteristics . 6

3.1 Findings . 6
3.2 Criteria of the Practical Comparison . 8
3.3 Findings of the Practical Comparison . 9

4 Performance Benchmark of AMLs . 11
4.1 AMLs Testing Library . 11
4.2 Model Instance Creation Time . 11
4.3 JuMP Benchmark . 13
4.4 Presolving in AMLs . 15
4.5 Presolve Impact on Solving . 16

5 Conclusions and Future Work . 18
References . 18
Appendix Nr. 1. 22
Appendix Nr. 2. 23

DMSTI-DS-N009-20-05 3

1 Introduction

Many real-world problems are routinely solved using modern optimization
tools [ALL10] [FG02] [GGW11] [PŽ14] [PGKA20] [PSKŽ20] [PDO+15]. Internally,
these tools use the combination of a mathematical model with an appropriate solution
algorithm to solve the problem at hand. Thus, the way mathematical models are
formulated is critical to the impact of optimization in real life.

Mathematical modeling is the process of translating real-world problems into math-
ematical formulations whose theoretical and numerical analysis can provide insight, an-
swers, and guidance beneficial for the originating application [Kal04]. Algebraic mod-
eling languages (AMLs) are declarative optimization modeling languages, which bridge
the gap between model formulation and the proper solution technique [FG02]. They
enable the formulation of a mathematical model as a human-readable set of equations.
Typically an AML does not specify how the described model is solved.

The high degree of similarity of the model written in an algebraic modeling lan-
guage to the mathematical formulation of a problem is an essential aspect which dis-
tinguishes algebraic modeling languages from other types of modeling languages, like
object-oriented (e.g., OptimJ), solver specific (e.g., LINGO) or general purpose (e.g., TOMLAB)
modeling languages. This algebraic design approach allows practitioners without spe-
cific programming or modeling knowledge to be efficient in describing the problems to
be solved.

It is also important to note that the algebraic modeling language is then responsible
for creating a problem instance that a solution algorithm can tackle [Kal04]. Since the
majority of algebraic modeling languages are integral parts of a specific modeling sys-
tem, it is important to isolate the responsibilities of a modeling language from an overall
modeling system.

In general, AMLs are sophisticated software packages that provide a key link be-
tween a mathematical concept of an optimization model and the complex algorithmic
routines that compute optimal solutions. Typically, a AML software automatically reads
a model and data, generates an instance, and conveys it to a solver in the required
form [Fou13].

From the late 1970s many AMLs were created (e.g., GAMS [MMvdE+16], AMPL [Fou03])
and are still actively developed and used today. Lately new open-source competitors to
the traditional AMLs started to emerge (e.g., Pyomo [HLW+17, HWW11], JuMP [DHL17,
LD15]). Therefore we feel that a review and comparison of the traditional and emerging
AMLs is needed to examine what newcomers are bringing to the competition.

The remainder of the paper is organized as follows. In Section 2 we review basic
characteristics of algebraic modeling languages and motivate our selection of AMLs for
the current review. In Section 3 we investigate how the requirements for a modern AML
are met within each of the chosen languages. In Section 4 we examine characteristics of

DMSTI-DS-N009-20-05 4

AMLs using an extensive benchmark. Finally, we conclude the paper in Section 5.

2 Algebraic Modeling Languages

The first algebraic modeling languages, developed in the late 1970s, were game changers
as they allowed separating model formulation from the implementation details [Kal04],
while keeping the notation close to the mathematical formulation of the problem [FG02].
Since the data appears to be more volatile than the problem structure, most modeling
languages designers insist on data and model structure being separated [H9̈9]. Therefore,
the central idea in modern algebraic modeling languages is the differentiation between
abstract models and concrete problem instances [HWW11]. A specific model instance is
generated from an abstract model using data. This way, model and data together specify
a particular instance of an optimization problem for which a solution can be sought. This
is realized by replicating every entity of an abstract model over the different elements of
the data set, and often is referred to as a set-indexing ability of the AML [FG02].

Essential characteristics of a modern AML could be defined in the following
way [Kal04]:

• problems are represented in a declarative way;

• there is a clear separation between problem definition and the solution process;

• there is a clear separation between the problem structure and its data.

In addition, the support for mathematical expressions and operations needed for de-
scribing non-linear models is often considered an important feature of an AML [Kal04].

Also, it is worth to observe that most interpreters included in today’s algebraic mod-
eling languages are based on automatic differentiation [FG02], a process in which the
modeling language can compute derivatives of problems from the model description
without the assistance of the user [Kal04]. This motivates us to include automatic dif-
ferentiation as an additional, important feature of a modern AML.

The algebraic expressions are useful not only in describing individual models but
also for describing manipulations on models and transformations of data. Thus almost
as soon as AML became available, users started finding ways to adapt model notations to
implement sophisticated solution strategies and iterative schemes. These efforts stimu-
lated the evolution within AMLs of scripting features, which include statements for loop-
ing, testing, and assignment [Fou13]. Therefore, scripting capabilities is another aspect
which differentiates AMLs.

2.1 Reviewed AMLs

For this review, we have chosen five AMLs: AIMMS [BR19], AMPL, GAMS, JuMP and Pyomo.
The selection was based on the following criteria:

DMSTI-DS-N009-20-05 5

• AMLs which won 2012 INFORMS Impact Prize award1 [INF12];

• popularity of an AML based on NEOS Server2 [NEO19] model input statistics;

• an emerging open-source alternatives JuMP and Pyomo were added to the list, since
it may be attractive for situations where budgets are tight or where the greatest
degree of flexibility is required – such as when new or customized algorithmic ideas
are being investigated [Fou17].

3 Comparative Analysis of AMLs Characteristics

In the following section, we investigate how the requirements for a modern AML de-
fined in the previous section are met by each of the chosen languages. The websites of
the AMLs and vendor documentation are used for this comparison. Any support of the
identified features and capabilities are validated against the documentation the suppliers
of the AMLs provide. In addition, an in-depth survey concluded by Robert Fourer in
Linear Programming Software Survey [Fou17] is also used as a reference.

The following AML characteristics are reviewed:

• are problems represented in a declarative way?

• does a clear separation between problem definition and the solution process exist?

• does a clear separation between the problem structure and its data exist?

Later on, a more practical comparison of AML characteristics is conducted to identify
potential easy of use of AML in daily work.

3.1 Findings

In all of the reviewed algebraic modeling languages problems are represented in a declar-
ative way. Furthermore, since all of them are part of a specific modeling system, a clear
separation between problem definition and the solution process in the context of the
modeling system exists. The separation between the problem structure and its data is
supported in all of the reviewed languages. It should be noted that GAMS, JuMP and Pyomo

also allow initiating data structures during their declaration, while AIMMS and AMPL only
support it as a separate step in the model instance building process. However, while it
might be convenient for building a simple model, we do not consider the lack of direct
data structure initiation as an advantage since, in real-world cases, it is rarely needed.
Therefore, we can conclude that all of the reviewed languages fulfill the basic character-
istics of a modern algebraic modeling language as defined in the previous Section 2.

1prize awarded to the originators of the five most important algebraic modeling languages
2free internet-based service for solving the numerical optimization problem

DMSTI-DS-N009-20-05 6

In Table 1, we provide an overview of key features each AML supports. For creating
such a summary, the information provided by the AML vendors on their websites was
used.

Table 1: Overview of AMLs features

Feature AIMMS AMPL GAMS JuMP Pyomo

Modeling Independent Yes Yes Yes Yes Yes
Scripting Yes Limited Limited Yes Yes

Data Input Yes Limited Limited Yes Yes
Manipulation Yes No No Yes Yes

Solvers Total 13 47 35 14 25
Global 1 4 9 2 1
LP 8 17 21 9 10
MCP 2 1 5 1 1
MINLP 3 6 15 3 6
MIP 5 14 16 6 8
MIQCP 5 5 20 3 4
NLP 6 19 17 7 10
QCP 6 9 21 6 6

Presolving Yes Yes No No No

Visualization Yes No No No No

License Paid Paid Paid Free Free

All of the reviewed AMLs allow modeling problems in a solver independent manner.
Additionally, AIMMS, JuMP and Pyomo provide a more powerful way to define advanced
algorithms using R, Julia or Python programming languages.

The ease of data input for the model differs among AMLs. While all of them sup-
port input from a flat file, some more advanced scenarios as reading data from relational
databases are much easier in AIMMS, JuMP or Pyomo. AMPL and GAMS require a complex
setup rather (e.g., using ODBC drivers) to access data from the database, wherein JuMP

or Pyomo, a standard Julia or Python driver, could be used to get data not only from rela-
tional but also from NoSQL type of database. Manipulation (e.g., transformation) of data
is only supported by AIMMS, JuMP and Pyomo.

When it comes to solvers support, AMPL is the one supporting the most. However,
it should be noticed that the categorization of solvers by supported problem types is
different among vendors. Thus in this comparison, we have just reflected information
available from vendors without trying to harmonize it across all of them.

Solvers supported by JuMP and Pyomo require additional explanation. First of all both
AMLs support solvers compatible with AMPL (via AmplNLWriter package or ASL in-
terface), so any solver that is equipped with an AMPL interface can be used by JuMP or
Pyomo. This could allow us to state that all AMPL solvers are supported by JuMP and Pyomo.

DMSTI-DS-N009-20-05 7

However, we have excluded solvers supported via AMPL interface since for some of the
commercial solvers, it might be needed to request a special version from the solver’s ven-
dor that comes with the AMPL interface. Secondly, since both of AMLs are open-source
there are multiple third party packages adding support for specific solvers for each of
AMLs. In Table 1 we counted only the solvers mentioned on official JuMP and Pyomo

websites.
Presolving capabilities are only available in AIMMS and AMPL. JuMP and Pyomo have

programming interfaces that allows creating custom presolvers, however, none of them
are provided out of the box.

Only AIMMS provides visualization of solver results out of the box. Using Python or
Julia libraries, it is possible to visualize the results produced by Pyomo and JuMP, but it re-
quires custom development and none of standard JuMP or Pyomo libraries are supporting
that.

It is important to conclude that JuMP and Pyomo are open-source AMLs built on top
general-purpose programming language, making it fundamentally different from the
competitors. This allows researchers familiar with Julia or Python to learn, improve, and
use JuMP or Pyomo much easier while it is practically impossible to introduce improve-
ments to the commercial counterparts.

3.2 Criteria of the Practical Comparison

For the practical comparison of the selected AMLs, a classical Dantzig Transportation
Problem was chosen [Dan63]. In this problem, we are given the supplies at the factories
and the demands at the markets for a single commodity. We have also given the unit
costs of shipping the product from factories to the markets. Then, the goal is to find the
least cost shipping schedule that meets requirements at markets and supplies at factories.

The transportation problem formulated as a model in all considered AML is com-
pared based on the following criteria:

• model size in bytes;

• model size in number of code lines;

• model size in number of language primitives used;

• basic model instance creation time.

Since the transportation problem is a linear programming (LP) type of problem, we
have chosen to measure model instance creation time as the time needed to export con-
crete model instance to MPS [lps19] format supported by most LP solvers.

For the first comparison, sample implementations of the transportation problem for
the AMLs under consideration were provided by the following sources:

• AIMMS Wikipedia page [Wik19]

DMSTI-DS-N009-20-05 8

• AMPL model in GNU Linear Programming Kit [LL14]

• GAMS Model Library [GAM19b]

• JuMP Examples [Dun20]

• Pyomo Gallery [Pyo19]

Transportation problem models in different AMLs can be seen in Appendix Nr. 2..
It should be noted that the textual representation of an AIMMS model presents the

model as a tree of attributed identifier nodes. It reflects how the model is given to the
modeler in the AIMMS IDE and is typically generated by the AIMMS IDE. Also, it is worth
to note that for the sake of simplicity, problem model samples are concrete models, i.e.,
data of the model instance is described alongside with model structure.

3.3 Findings of the Practical Comparison

A comparison of the characteristics for the sample Transportation Problem model im-
plemented in all the reviewed algebraic modeling languages can be seen in Table 2. To
have a more concise view, the simplification of model implementations provided in the
literature sources is made in the following way:

• all the optional comments, explanatory texts, and documentation are removed;

• all empty lines are excluded;

• parts of the code responsible for calling the solver and displaying results are omit-
ted;

• while counting AML primitives generic functions (sum, for), data loading directives
(data), arithmetical and logical operators are excluded.

Table 2: Comparison of Transportation Problem models

Criteria AIMMS AMPL GAMS JuMP Pyomo

size in bytes 2229 683 652 632 1235
lines of code 68 24 31 18 29
primitives used 9 5 8 4 6

As we see from Table 2, the models implemented in AMPL, GAMS and JuMP are the most
compact ones, while model written in AIMMS is much more verbose and Pyomo lies in the
middle. The reason for AIMMS model being much more verbose is in the nature of AIMMS
modeling system, which propagates model creation using graphical user interface (GUI)
while keeping the source code of the model hidden from a modeler. Naturally, there is
not much of the focus on how the model is stored. We can argue that while the GUI based

DMSTI-DS-N009-20-05 9

approach might be convenient to some of the modelers, it enforces greater vendor lock-in
and makes extensibility and maintainability of the model harder.

While comparing a number of language primitives required to create a model, JuMP
and AMPL showed best results which allows us to predict that these modeling languages
might have a more gentle learning curve.

Therefore, we can conclude that in the context of reviewed algebraic modeling lan-
guages, JuMP allows formulating an optimization problem in the shortest way.

The creation time of the transportation problem model instance defined in each
AMLs was used as a measure for a model loading. The process was done in the following
steps:

1. loading model instance from a problem definition written in the native AML;

2. exporting model instance to MPS format;

3. measuring total execution time;

4. investigating characteristics of an instance model.

Since creators of AIMMS system did not respond to the request for an academic license, we
were not able to include AIMMS into the benchmark. Generated model instances in MPS
format can be found in models directory of our GitHub repository [JP19].

Table 3: Characteristics of the created transportation model instances

Characteristic AMPL GAMS JuMP Pyomo

Constraints 6 6 6 6
Non zero elements 13 19 13 13
Variables 7 7 7 7

Characteristics of the created model instances can be seen in Table 3. We can conclude
that all of the modeling languages have created a model instance using the same amount
of variables and constraints, however, the definition of non zero elements is different
between GAMS and other modeling systems.

Table 4: Total time of consecutive transportation model instance creation runs

AML 1 run 10 runs 100 runs

AMPL 30 ms 220 ms 2130 ms
GAMS 170 ms 1730 ms 16490 ms
JuMP 28341 ms 32199 ms 58151 ms
Pyomo 720 ms 7280 ms 79600 ms

In Table 4 model instance creation time benchmark results are provided. We have
tried to run multiple consecutive model instance creations (10 runs, 100 runs) in order

DMSTI-DS-N009-20-05 10

to identify if any caching is being used by the modeling system. We can exhibit that
AMPL showed significantly better results compared to others. This allows concluding that
AMPL is the most optimized from a performance point of view. On the other hand, poor
JuMP performance confirms [DHL17] statement that JuMP has a noticeable start-up cost
of a few seconds even for the smallest instances. In our case only the initialization of
JuMP package took around 7 seconds. We also observed significant speed-up in multiple
consecutive model instances creation which also confirms [DHL17] statement that if a
family of models is solved multiple times within a single session, this cost of compilation
is only paid for the first time that an instance is solved.

4 Performance Benchmark of AMLs

All of the examined AMLs support all types of traditional optimization problems, how-
ever it is unclear how efficiently each AML is capable of handling large model loading
and what optimizations are applied during model instance creation. It would also be of
a great value to analyze how each of the modeling languages performs within an area
of the specific type of optimization problems (linear, quadratic, nonlinear, mixed-integer,
etc.). To give such a comparison and thoroughly examine characteristics of AMLs, a more
extensive benchmark involving much larger optimization problem models is needed.
Therefore a large and extensive library of sample optimization problems for the analyzed
AMLs has to be used.

4.1 AMLs Testing Library

We have chosen GAMS Model Library [GAM19b] as a reference for creating such a sam-
ple optimization problem suite against which future research will be done. Automated
shell script gamslib-convert.sh was created to build such a library. It can be found in
the tools directory of our GitHub repository [JP19]. Detailed explanation on how the
test library creation tool works and issues identified in the GAMS Library are provided
in Appendix Nr. 1..

As a result of the transformation, we compiled a library consisting of 296 sample
problems in AMPL, GAMS, JuMP and Pyomo scalar model formats.

4.2 Model Instance Creation Time

The generated library was used to determine the amount of time each modeling sys-
tem requires to create problem instance of a particular problem. For that, we decided to
write load-benchmark.sh shell script available in tools directory of our GitHub reposi-
tory [JP19] which loads each model into the particular modeling system and then exports
it to the format understandable by the solvers. We have chosen .nl [Gay05] format as
the target format acceptable by the solvers, as .nl supports a wide range of optimization

DMSTI-DS-N009-20-05 11

problem types. The benchmark measures the time modeling system took to perform both
model instance creation and export operations.

We have chosen to exclude sample problems which had conversion errors from the
benchmark (more information about them in Appendix Nr. 1.), meaning only the mod-
els which were successfully processed by all modeling systems were compared. This
reduced the scope of our benchmark to 268 models.

15 10 19 14 11 22 11 10 20
51

234 227 240 234
242 259 238 236 262

364

838

719

841

764
745

936 852

669

826

1344

450,3

42,2

897,5

256,9

160,3

1498,7

72,3
19,0

604,3

1380,0

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

CNS DNLP LP MCP MINLP MIP MIQCP MPEC NLP QCP

M
illi
se
co
nd
s

AMPL GAMS Pyomo JuMP

Figure 1: Average model instance creation time

Benchmark methodology, hardware and software specifications can be found in our
GitHub repository [JP19]. Detailed results are available in model-loading-times.xlsx

workbook in the benchmark section of our GitHub repository [JP19]. We have provided
summary of average model instance creation time split by the problem type in Figure 1.

We can see the trend exhibited in the transportation problem model benchmark per-
sists. AMPL is still a definite top performer while JuMP and Pyomo perform the worst.
There are no significant variations between different optimization problem types except
for JuMP where model instance creation time tends to vary significantly while working
with different types of problems. Also, as confidence intervals show, variation between
different models of the same type is also more significant once using JuMP. We tend to
believe this is caused by dynamic nature of Julia and mix of run time compilation and
caching of similar JuMP models.

We have observed that average difference between AMPL and other contenders in-
creases when models become larger. Comparing instance creation times of large models
(models having more than 500 equations, 8 such models in the testing library) reveals 11
times the difference between AMPL and GAMS, 38 times the difference between AMPL and
Pyomo and close to 100 times the difference between AMPL and JuMP. The difference be-

DMSTI-DS-N009-20-05 12

24 17 30 21

273
254 292 270

926

886

1014

880

1879,7

1185,0

2477,7

861,0

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

LP MINLP MIP NLP

M
illi
se
co
nd
s

AMPL GAMS Pyomo JuMP

Figure 2: Average large model instance creation time

tween GAMS and Pyomo stayed roughly the same - around 3.5 times. Summary of large
models instance creation time can be seen in Figure 2.

Thus we can conclude that out of reviewed AMLs AMPL is a clear top performing
AML when it comes to model instances creation time.

4.3 JuMP Benchmark

A similar model instance creation time benchmark has already been conducted by I. Dun-
ning, J. Huchette and M. Lubin [DHL17] where a smaller set of large models was used.
While some of the trends exhibited in our benchmark persists (AMPL is the fastest, GAMS
comes second) JuMP performance in our and I. Dunning et al. benchmarks differs signifi-
cantly. This leads us to compare benchmark methodology and results by conducting the
benchmark described by I. Dunning et al. [DHL17].

First of all our model instance creation time benchmark methodologies differ. While
we are trying to be solver independent and instruct AML to export generated model
instance to NL file, I. Dunning et al. are attempting to solve model using Gurobi solver
and measure time until Gurobi reports model characteristics. We believe that while our
approach can be impacted by system’s input/output performance, approach of using
specific solver heavily depends on how the solver interface is implemented for particular
AML.

We have conducted two benchmarks - one as described in the original article and
second one using our method of exporting NL file. Results of benchmarks can be seen in
Table 5 and Table 6

Before running benchmarks we had to rewrite some parts of sample lqcp and

DMSTI-DS-N009-20-05 13

Table 5: JuMP benchmark I. Dunning et al. method (milliseconds)

Model AMPL GAMS Pyomo JuMP (DIRECT) JuMP (CACHE)

lqcp-500 2093 2271 17000 17388 37317
lqcp-1000 8075 11995 139201 24590 44575
lqcp-1500 18222 38813 322604 39370 66566
lqcp-2000 32615 93586 575406 57597 88833

fac-25 407 480 7442 17517 39245
fac-50 2732 2884 43106 21331 47735
fac-75 9052 12422 150550 31582 57432
fac-100 20998 29144 393200 61326 93129

facility JuMP models since syntax changes were introduced between JuMP v0.12 (used
by I. Dunning et al.) and JuMP v0.21.5 (used by us, latest version at the time of writing).
Our benchmark was also conducted using newer versions of other AMLs - AMPL Version
20190207, GAMS v.32, Pyomo 5.7 (Python 3.8.3), Gurobi 9.0.

Additionally we wanted to test performance of JuMP’s new abstraction layer
for working with solvers called MathOptInterface.jl (MOI). So we’ve tried both
CachingOptimizer and DIRECT modes. As seen in Table 5 DIRECT mode performed much
better than the CachingOptimizer mode for both lqcp and facility models. An average
difference of close to two times in instance creation time leads us to suggest modellers to
carefully evaluate choice of MOI type based on specific use-cases.

Table 6: JuMP benchmark export to NL method (milliseconds)

Model AMPL GAMS Pyomo JuMP

lqcp-500 2716 3265 39988 20424
lqcp-1000 10503 14394 161404 80578
lqcp-1500 25402 49822 307121 483268
lqcp-2000 42780 125564 >10 min >10 min

fac-25 409 502 9420 8163
fac-50 2837 2993 43087 31799
fac-75 10879 13457 143286 219548
fac-100 23474 32128 328170 >10 min

Overall both benchmarks confirmed our observations that JuMP suffers from long
warm-up time required to pre-compile JuMP libraries. Results were also consistent with
the patterns exhibited during full gamslib benchmark performed earlier.

We were not able to reproduce JuMP performance metrics reported by I. Dunning et
al. where JuMP always outperforms Pyomo. Using original benchmark method JuMP out-
performed Pyomo only once model size increased. However while using our export to NL
file method JuMP on the contrary started to fall behind Pyomo once model size increased.

The reported differences between our and original I. Dunning et al. benchmark might

DMSTI-DS-N009-20-05 14

be caused by multiple factors such as different JuMP versions used, improved Pyomo per-
formance or different Gurobi versions. It is important to stress that JuMP is a very actively
developed AML which underwent major changes during last years so we feel it should be
valuable to explore why the performance could have degraded and what are the reasons
for such slow I/O operations performance revealed during write to NL file benchmark.

4.4 Presolving in AMLs

Another performance-related feature of algebraic modeling languages is the ability to
presolve problem before providing it to the solver. The presolver can preprocess prob-
lems and simplify, i.e., reduce the problem size or determine the problem to be unfeasible.

Table 7: AMPL model presolving

Type
Models
Count

Presolved
Presolved

(%)
Not

Feasible
Constraints
reduced

Variables
reduced

CNS 4 4 100.00% 0 14.63% 31.39%
DNLP 5 1 20.00% 0 0.00% 7.41%
LP 57 21 36.84% 0 17.81% 9.66%
MCP 19 17 89.47% 0 47.00% 8.56%
MINLP 21 13 61.90% 1 16.32% 9.30%
MIP 61 37 60.66% 0 19.06% 11.50%
MIQCP 5 3 60.00% 2 0.00% 2.38%
MPEC 1 1 100.00% 0 50.00% 0.00%
NLP 101 48 47.52% 2 9.71% 11.55%
QCP 10 6 60.00% 0 7.10% 2.55%
RMIQCP 2 0 0.00% 0 0.00% 0.00%

Total 286 151 52.80% 5 18.42% 10.73%

Only two of the reviewed algebraic modeling languages provide presolving capabili-
ties - AMPL [Fou03] and AIMMS [AIM19]. Since we did not have the opportunity to evaluate
AIMMS modeling language practically, we were only able to examine AMPL presolving ca-
pabilities. In order to evaluate AMPL presolving performance, we gathered presolving
characteristics while performing model instance creation time benchmark. We have used
286 models which were successfully converted from GAMS original model to AMPL scalar
model. A detailed report of the presolving applied to the specific model can be seen in
the benchmark section of our GitHub repository [JP19] while the summary of it can be
found in Table 7.

We observed that AMPL presolver managed to simplify models in 52.8% of the cases,
out of which 5 times it was able to determine that the problem solution is not feasible, thus
even not requiring to call the solver. On average, once applied AMPL presolver managed
to reduce the model size by removing 18.42% of constraints and 10.73% of variables.

We can conclude that AMPL presolver is an efficient way to simplify larger problems
which might lead to improved solution finding performance once invoking a solver with

DMSTI-DS-N009-20-05 15

an already reduced problem model instance. Also, the ability to determine not feasible
models can help modelers in the problem definition process to debug and find errors in
the model definition. This allows us to argue that presolving is an important capability
of any modern algebraic modeling language.

4.5 Presolve Impact on Solving

In order to evaluate if AMPL presolving has a positive impact on problem solving an ad-
ditional benchmark was conducted. The benchmark included 146 out of 151 models to
which AMPL has applied presolve in the model instance creation benchmark. Five mod-
els which AMPL presolve determined to be not feasible were excluded from the bench-
mark. Shell script solve-benchmark.sh provided in tools directory of our GitHub repos-
itory [JP19] was created for executing such a benchmark. The script solves each model
using one of the solvers and gathers output statistics to a report file.

We have chosen to solve models using Gurobi [Gur19] and BARON [Sah19, TS05]
solvers. Gurobi Optimizer (v.8.1.0) was chosen for solving LP, MIP, QCP and MIQCP

type of problems. While BARON (v.18.11.12) global solver was chosen for solving NLP,

MINLP, MCP, MPEC, CNS and DNLP problems. The choice of the solvers was motivated
by the support for particular problem types [Gur19, Sah19] and the popularity of solvers
based on NEOS Server statistics [NEO19].

Two attempts to solve each model were made. One with AMPL presolver turned on
(default setting) and the second one with AMPL presolver turned off. After each run solvers
statistics including iterations count, solve time (pure solve phase execution time) and
objective were gathered.

It is important to note that both BARON and Gurobi solvers have their presolve mech-
anisms [PS17, ABG+19], thus the provided model is simplified by the solver too. This
might result in very similar models being solved by the solver in spite of the AMPL pre-
solve being turned on or off. However, the focus was on estimating AMPL presolve impact
in real-life situations, so full benchmark was executed without changing default solver
behavior. Later on, an additional benchmark was made to estimate what is the impact of
AMPL presolve once solver presolve functionality is turned off.

Detailed AMPL presolve impact on solving report can be found in our GitHub repos-
itory’s [JP19] directory benchmark file ampl-solving-times.xlsx sheet Benchmark 1.
While here in Table 8, we summarize the positive and negative impact AMPL presolve
had on solving problems iteration and time-wise. Positive impact means fewer iterations
or time was needed to solve a problem once the presolve was turned on. A negative
impact means the opposite that more iterations or time was required.

During the benchmark 6 models failed to be solved due to solver limitations. A de-
tailed explanation of limitations faced is provided in the benchmark report. Two models
deemed to be not feasible and two were solved during the AMPL presolve phase. Solvers
were capable of solving 41 models during solver’s presolve phase. And for six models,

DMSTI-DS-N009-20-05 16

Table 8: Summary of AMPL presolve impact on solving

Iteration-wise Time-wise Iteration-wise % Time-wise %

Positive 37 67 26.43% 47.86%
Neutral 74 40 52.86% 28.57%
Negative 29 33 20.71% 23.57%

the mismatching objective was found with AMPL presolve turned on and off. Overall, AMPL
presolve had a positive impact in 26.43% of the cases iteration-wise and 47.86% time-wise.
However, it had a negative impact in 20.71% of cases iteration-wise and 23.57% time-wise.

As mentioned earlier, both BARON and Gurobi solvers have their own presolve mech-
anisms. In order to test what would be an impact of AMPL presolve if the solver does
not attempt to presolve a problem on its own an additional benchmark was made. Since
only Gurobi allows to disable presolve functionality, a subset of models previously solved
with Gurobi was chosen for the benchmark. Detailed benchmark results can be seen in
our GitHub repository’s [JP19] directory benchmark file ampl-solving-times.xlsx sheet
Benchmark 2. The summary of the benchmark is provided in Table 9 and Table 10.
Gurobi was not capable to solve two MIP problems (clad and mws) in reasonable time
once Gurobi presolve functionality was turned off. Those models were excluded from
the benchmark.

Table 9: AMPL presolve impact with Gurobi presolve on

Iteration-wise Time-wise Iteration-wise % Time-wise %

Positive 18 39 28.57% 61.90%
Neutral 34 0 53.97% 0.00%
Negative 11 24 17.46% 38.10%

Table 10: AMPL presolve impact with Gurobi presolve off

Iteration-wise Time-wise Iteration-wise % Time-wise %

Positive 33 44 54.10% 72.13%
Neutral 10 0 16.39% 0.00%
Negative 18 17 29.51% 27.87%

AMPL presolve had a greater positive effect both iteration-wise (+22.4%) and time-
wise (+10.2%) once Gurobi presolve was turned off. AMPL presolve also had a less neu-
tral impact once solver presolving was off, thus leading to a conclusion that during the
first benchmark some models were simplified to very similar ones before actually solving
them.

As we can see from the benchmarks presolving done by AML has inconclusive effects
on the actual problem solving both iterations and time-wise. However, a positive impact

DMSTI-DS-N009-20-05 17

is always greater than the negative one and it especially becomes evident once solver does
not have or use it’s own problem presolving mechanisms. This allows us to conclude
that the presolving capabilities of AML is an important feature of a modern algebraic
modeling language. We can also advise choosing AML having presolving capabilities in
cases the solver used to solve the problem does not have its own presolving mechanism.

5 Conclusions and Future Work

From the research, we can conclude that AMPL allows to formulate an optimization prob-
lem in the shortest and potentially easiest way while also providing the best performance
in model instance loading times. It also leverages the power of model presolving, which
is helpful for the modelers in both problem definition and efficient solution finding pro-
cesses. GAMS is a strong runner up providing a very similar to AMPL problem formulation
capabilities though running behind in the model instance creation time. AIMMS can be con-
sidered as being on its own class of modeling languages as it has taken a purely graphical
user interface based approach. Since we were not able to examine the performance char-
acteristics of AIMMS due to lack of academic license, the performance aspect remains un-
clear. Open source alternatives JuMP and Pyomo are on par with commercial competitors
in problem definition process, however performance of model instance creation is a bit
behind compared to its competitors. JuMP suffers from noticeable environment start-up
cost while Pyomo performance tends to downgrade once size of the model increases.

We would like to continue our research in this area by including performance com-
parison on automatic differentiation, adding even more large problems to our test library
and exploring potential of parallel model instance creation support by AMLs.

References

[ABG+19] Tobias Achterberg, Robert E Bixby, Zonghao Gu, Edward Rothberg, and
Dieter Weninger. Presolve reductions in mixed integer programming. IN-
FORMS Journal on Computing, 2019.

[AIM19] AIMMS B.V. The AIMMS Presolver, 2019.

[ALL10] Kumar Abhishek, Sven Leyffer, and Jeff Linderoth. FilMINT: An outer
approximation-based solver for convex mixed-integer nonlinear pro-
grams. INFORMS Journal on computing, 22(4):555–567, 2010.

[BR19] Johannes Bisschop and Marcel Roelofs. AIMMS-The User’s Guide, 2019.

[Dan63] George B Dantzig. The Classical Transportation Problem. In Linear
Programming and Extensions, pages 299–315. Princeton University Press,
Princeton, NJ, 1963.

DMSTI-DS-N009-20-05 18

[DHL17] Iain Dunning, Joey Huchette, and Miles Lubin. JuMP: A modeling lan-
guage for mathematical optimization. SIAM Review, 59(2):295–320, 2017.

[Dun20] Dunning, Iain and Huchette, Joey and Lubin, Miles. JuMP Examples, 2020.

[FG02] Emmanuel Fragniere and Jacek Gondzio. Optimization modeling lan-
guages. Handbook of Applied Optimization, pages 993–1007, 2002.

[Fou03] Robert Fourer. AMPL : a modeling language for mathematical programming.
Thomson/Brooks/Cole, Pacific Grove, CA, 2003.

[Fou13] Robert Fourer. Algebraic modeling languages for optimization. In Encyclo-
pedia of Operations Research and Management Science, pages 43–51. Springer,
US, 2013.

[Fou17] Robert Fourer. Linear Programming: Software Survey. OR/MS Today,
44(3), June 2017.

[GAM19a] GAMS Development Corporation. GAMS Convert, 2019.

[GAM19b] GAMS Development Corporation. GAMS Model Library, 2019.

[Gay05] David M Gay. Writing .nl files. Optimization and Uncertainty Estimation,
2005.

[GGW11] Chris Groër, Bruce Golden, and Edward Wasil. A parallel algorithm for the
vehicle routing problem. INFORMS Journal on Computing, 23(2):315–330,
2011.

[Gur19] Gurobi Optimization, LLC. Gurobi optimizer reference manual, 2019.

[H9̈9] Tony Hürlimann. Mathematical Modeling and Optimization, volume 31 of
Applied Optimization. Springer US, Boston, MA, 1999.

[HLW+17] William E. Hart, Carl D. Laird, Jean-Paul Watson, David L. Woodruff,
Gabriel A. Hackebeil, Bethany L. Nicholson, and John D. Siirola. Pyomo–
optimization modeling in python, volume 67. Springer Science & Business
Media, US, second edition, 2017.

[HWW11] William E Hart, Jean-Paul Watson, and David L Woodruff. Pyomo: model-
ing and solving mathematical programs in python. Mathematical Program-
ming Computation, 3(3):219–260, 2011.

[INF12] INFORMS. INFORMS Impact Prize 2012, 2012.

[JP19] Vaidas Jusevičius and Remigijus Paulavičius. Algebraic modeling lan-
guage benchmark, 2019.

DMSTI-DS-N009-20-05 19

[Kal04] Josef Kallrath. Modeling languages in mathematical optimization, volume 88.
Springer Science & Business Media, US, 2004.

[LD15] Miles Lubin and Iain Dunning. Computing in Operations Research Using
Julia. INFORMS Journal on Computing, 27(2):238–248, 2015.

[LL14] Lopaka Lee and Louis Luangkesorn. GNU Linear Programming Kit, 2014.

[lps19] lpsolve developers. MPS file format, 2019.

[MMvdE+16] Bruce A McCarl, Alex Meeraus, Paul van der Eijk, Michael Bussieck,
Steven Dirkse, and Franz Nelissen. McCarl Expanded GAMS user guide.
Citeseer, US, 2016.

[NEO19] NEOS Server. Neos Solver Access Statistics, 2019.

[PDO+15] Efstratios N. Pistikopoulos, Nikolaos A. Diangelakis, Richard Oberdieck,
Maria M. Papathanasiou, Ioana Nascu, and Muxin Sun. PAROC—An in-
tegrated framework and software platform for the optimisation and ad-
vanced model-based control of process systems. Chemical Engineering Sci-
ence, 136:115–138, 2015. Control and Optimization of Smart Plant Opera-
tions.

[PGKA20] R Paulavičius, J Gao, P-M Kleniati, and C. S Adjiman. BASBL: Branch-
And-Sandwich BiLevel solver: Implementation and computational study
with the BASBLib test set. Computers & Chemical Engineering, 132:106609,
2020.

[PS17] Yash Puranik and Nikolaos V. Sahinidis. Domain reduction techniques for
global NLP and MINLP optimization. Constraints, 22(3):338–376, 2017.

[PSKŽ20] Remigijus Paulavičius, Yaroslav D. Sergeyev, Dmitri E. Kvasov, and Julius
Žilinskas. Globally-biased birect algorithm with local accelerators for ex-
pensive global optimization. Expert Systems with Applications, 144:113052,
2020.

[Pyo19] Pyomo. Pyomo Gallery, 2019.

[PŽ14] Remigijus Paulavičius and Julius Žilinskas. Simplicial Global Optimization.
SpringerBriefs in Optimization. Springer, New York, 2014.

[Sah19] N. V. Sahinidis. BARON 19.7.13: Global Optimization of Mixed-Integer
Nonlinear Programs, User’s Manual, 2019.

[TS05] M. Tawarmalani and N. V. Sahinidis. A polyhedral branch-and-cut ap-
proach to global optimization. Mathematical Programming, 103:225–249,
2005.

DMSTI-DS-N009-20-05 20

[Wik19] Wikipedia contributors. AIMMS — Wikipedia, The Free Encyclopedia,
2019.

DMSTI-DS-N009-20-05 21

Appendixes

Appendix Nr. 1.
Creation of AMLs Testing Library
The automated shell script gamslib-convert.sh availble in the tools directory of our GitHub

repository [JP19] was created to generate AMLs testing library. The script uses GAMS Convert tool
v.32 [GAM19a] to convert model in GAMS proprietary format to a scalar model in the AMPL, GAMS, JuMP
and Pyomo formats. Characteristics of a sample problem models (number of equations, variables, discrete
variables, non-zero elements, non-zero nonlinear elements) are automatically extracted and noted. Sample
problems are also grouped based on optimization problem types.

The script has two execution modes - one for converting single model and another for converting all the
models in GAMS Library. An example of how transportation problem available in GAMS Library [GAM19b]
looks converted to GAMS scalar format can be seen in Listing 1.

Listing 1 Transportation problem converted to GAMS scalar model

Variables x1,x2,x3,x4,x5,x6,x7;
Positive Variables x1,x2,x3,x4,x5,x6;
Equations e1,e2,e3,e4,e5,e6;
e1.. -0.225*x1 - 0.153*x2 - 0.162*x3 - 0.225*x4

- 0.162*x5 - 0.126*x6 + x7 =E= 0;
e2.. x1 + x2 + x3 =L= 350;
e3.. x4 + x5 + x6 =L= 600;
e4.. x1 + x4 =G= 325;
e5.. x2 + x5 =G= 300;
e6.. x3 + x6 =G= 275;
Model m / all /;
m.limrow=0; m.limcol=0;
Solve m using LP minimizing x7;

At the time of writing, there were 423 models in the GAMS Model Library. Out of them, we eliminated
66 models which are using GAMS proprietary modeling techniques (e.g., MPSGE, BCH Facility), 20 using
general-purpose programming languages features (e.g. cycles), four models tightly coupled to CPLEX and
DECIS solvers.

We feel it is important to note that 35 models failed to be loaded by a fully licensed GAMS Convert tool
due to execution or compilation errors. Thus meaning some models in the GAMS Library are not compatible
with GAMS modeling system itself.

While performing the model instance creation benchmark, we have identified that 12 AMPL, 11 JuMP and
29 Pyomo models generated by GAMS Convert tool had errors in them.

Listing 2 Example of a GAMS Convert error

GAMS Convert generated Pyomo suffix syntax
suffix ref integer IN;
Correct Pyomo suffix syntax
ref = Suffix(direction=Suffix.EXPORT, datatype=Suffix.INT)

Most of the Pyomo errors were caused by an incorrect GAMS Convert tool behavior where the definition

DMSTI-DS-N009-20-05 22

of the Suffix primitive uses AMPL but not Pyomo semantics. Similar issues where observed in some of the
JuMP models. Example of what GAMS Convert generates and the correct Pyomo syntax can be seen in Listing 2.

Appendix Nr. 2.
Transportation Problem Models

Listing 3 Transportation problem defined in AMPL format

set I;
set J;

param a{i in I};
param b{j in J};
param d{i in I, j in J};
param f;
param c{i in I, j in J} := f * d[i,j] / 1000;

var x{i in I, j in J} >= 0;
minimize cost: sum{i in I, j in J} c[i,j] * x[i,j];
s.t. supply{i in I}: sum{j in J} x[i,j] <= a[i];
s.t. demand{j in J}: sum{i in I} x[i,j] >= b[j];

data;

set I := Seattle San-Diego;
set J := New-York Chicago Topeka;
param a := Seattle 350
San-Diego 600;

param b := New-York 325
Chicago 300
Topeka 275;

param d : New-York Chicago Topeka :=
Seattle 2.5 1.7 1.8
San-Diego 2.5 1.8 1.4 ;

param f := 90;
end;

DMSTI-DS-N009-20-05 23

Listing 4 Transportation problem defined in GAMS format

Set
i 'canning plants' / seattle, san-diego /
j 'markets' / new-york, chicago, topeka /;

Parameter
a(i) 'capacity of plant i in cases'

/ seattle 350
san-diego 600 /

b(j) 'demand at market j in cases'
/ new-york 325

chicago 300
topeka 275 /;

Table d(i,j) 'distance in thousands of miles'
new-york chicago topeka

seattle 2.5 1.7 1.8
san-diego 2.5 1.8 1.4;

Scalar f 'freight in dollars per case per thousand miles' / 90 /;

Parameter c(i,j) 'transport cost in thousands of dollars per case';
c(i,j) = f*d(i,j)/1000;

Variable
x(i,j) 'shipment quantities in cases'
z 'total transportation costs in thousands of dollars';

Positive Variable x;

Equation
cost 'define objective function'
supply(i) 'observe supply limit at plant i'
demand(j) 'satisfy demand at market j';

cost.. z =e= sum((i,j), c(i,j)*x(i,j));
supply(i).. sum(j, x(i,j)) =l= a(i);
demand(j).. sum(i, x(i,j)) =g= b(j);
Model transport / all /;
solve transport using lp minimizing z;

DMSTI-DS-N009-20-05 24

Listing 5 Transportation problem defined in Pyomo format

from pyomo.environ import *

model = ConcreteModel()

model.i = Set(initialize=['seattle','san-diego'])
model.j = Set(initialize=['new-york','chicago', 'topeka'])

model.a = Param(model.i, initialize={'seattle':350,'san-diego':600})
model.b = Param(model.j, initialize={'new-york':325,'chicago':300,

'topeka':275})

dtab = {
('seattle', 'new-york') : 2.5,
('seattle', 'chicago') : 1.7,
('seattle', 'topeka') : 1.8,
('san-diego','new-york') : 2.5,
('san-diego','chicago') : 1.8,
('san-diego','topeka') : 1.4,
}

model.d = Param(model.i, model.j, initialize=dtab)
model.f = Param(initialize=90)
def c_init(model, i, j):

return model.f * model.d[i,j] / 1000
model.c = Param(model.i, model.j, initialize=c_init)

model.x = Var(model.i, model.j, bounds=(0.0,None))

def supply_rule(model, i):
return sum(model.x[i,j] for j in model.j) <= model.a[i]

model.supply = Constraint(model.i, rule=supply_rule)
def demand_rule(model, j):

return sum(model.x[i,j] for i in model.i) >= model.b[j]
model.demand = Constraint(model.j, rule=demand_rule)

def objective_rule(model):
return sum(model.c[i,j]*model.x[i,j] for i in model.i for j in model.j)

model.objective = Objective(rule=objective_rule, sense=minimize)

DMSTI-DS-N009-20-05 25

Listing 6 Transportation problem defined in JuMP format

using JuMP
ORIG = ["Seattle", "San-Diego"]
DEST = ["New-York", "Chicago", "Topeka"]
supply = [350, 600]
demand = [325, 300, 275]
cost = [

2.5 1.7 1.8;
2.5 1.8 1.4

]
F = 90
cost_f = [F * cost[i,j] / 1000

for i in 1:length(ORIG), j in 1:length(DEST)]

model = Model()

@variable(model, trans[1:length(ORIG), 1:length(DEST)] >= 0)
@objective(model, Min, sum(cost_f[i, j] * trans[i, j]

for i in 1:length(ORIG), j in 1:length(DEST)))
@constraint(model, [i in 1:length(ORIG)],

sum(trans[i, j] for j in 1:length(DEST)) <= supply[i])
@constraint(model, [j in 1:length(DEST)],

sum(trans[i, j] for i in 1:length(ORIG)) >= demand[j])

DMSTI-DS-N009-20-05 26

	Introduction
	Algebraic Modeling Languages
	Reviewed AMLs

	Comparative Analysis of AMLs Characteristics
	Findings
	Criteria of the Practical Comparison
	Findings of the Practical Comparison

	Performance Benchmark of AMLs
	AMLs Testing Library
	Model Instance Creation Time
	JuMP Benchmark
	Presolving in AMLs
	Presolve Impact on Solving

	Conclusions and Future Work
	References
	Appendix Nr. 1.
	Appendix Nr. 2.

