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Abstract 

This report presents research methods, review of blockchain platforms with smart 

contract functionality, theoretical and empirical research. A model of smart contract for 

electricity exchange on Ethereum platform is proposed. An experiment for testing 

vulnerabilities of Ethereum smart contracts of open source projects related to electricity 

sector is conducted and summary of experimental results is presented together with 

directions for further research. 

Keywords: Blockchain, Ethereum, Smart contract, electricity trading. 
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1 Introduction 
Following current trends of energy systems’ transformation towards sustainable and 

clean energy and increasing deployment of renewable energy sources, more households 

are acquiring independent power generation capacities and thus becoming prosumers. 

This encourages fostering community capabilities of sustaining themselves by sharing 

excess of produced energy among community members and reducing the need and 

usage of electricity provided by conventional centralized systems. 

The challenge lies in finding effective technological solution which enables automated 

electricity sharing/trading over distributed network in decentralized, transparent and 

trustful way. 

Blockchain technology is explored as potentially suitable platform for distributed 

energy market and number of blockchain research and industrial projects and startups 

are seeking solutions for the energy industry [2].  

Smart contracts executed on certain public and private blockchain platforms like 

Ethereum provide Turing complete programming environment and are of particular 

interest as they enable to create sophisticated and varied applications. Their resistance 

to vulnerabilities is the key factor for functioning and stability of the power 

infrastructure. 

This work is devoted to the investigation of features of 2nd generation blockchain 

platforms (i.e. smart contract capable), their suitability for distributed electricity trading 

application, vulnerability issues and is organized in following way: 

Section 2 describes research methods used for theoretical and empirical research. 

Section 3 presents review of blockchain platforms. Section 4 presents a model of 

Ethereum blockchain smart contract for electricity exchange. Section 5 presents an 

empirical research of vulnerabilities of existing Ethereum blockchain smart contracts 

from projects within energy sector as well as excess gas consumption, as one of 

vulnerability categories, analysis. 

2 Research methods 
Literature review and comparative analysis were used for reviewing 2nd generation 

blockchain platforms and evaluating their suitability for decentralised electricity trading 

application. Literature review and analysis were also used for preparation of experiment 

– for selection of testing tools and smart contract test set from blockchain-based projects 

related to the energy sector. 

Conceptualization and modelling were used for building smart contract model for peer-

to-peer electricity exchange on Ethereum blockchain platform and creation of model 

smart contract for experiment. 

Experimental analysis was used to check and evaluate vulnerabilities of smart contract 

test set and to evaluate extra gas consumption of the modelled smart contract. 

3 Review of blockchain platforms 
 

For implementation of customised business logic on the blockchain, the platform has 

to have smart contract functionality. Such blockchain platforms are called 2nd 

generation blockchains. When considering a smart contract enabled blockchain 

platform suitability for a specific use case many aspects should be accounted for.  

• Industry focus – the role which a platform is intended to occupy in the industry: 

is it a general-purpose cross-industry platform designed to build various types 
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of applications on top of it, or providing financial services, or certain similarly 

more focused role. 

• Consensus protocol which is a crucial component for members of distributed 

system to reach consensus on its true state at the certain point in time. Different 

consensus protocols ensure different levels of security and different 

performance and scalability capabilities. 

• Programming language for smart contract development – is it language specific 

to certain blockchain platform or well-known widely used programming 

language. 

• Permissioned or permissionless platform – does it allow every user reading and 

updating blockchain state or just selected, identified users. 

• Transaction throughput – what is blockchain platform capability to perform 

certain number of transactions per second. 

• Native currency – does a blockchain platform employs native cryptocurrency. 

• Architecture of the platform which can be highly modular, configurable, allow 

for changeable consensus, or have certain limitations which could hugely 

impact its performance. 

Table 1 provides characteristics [33], [34], [30], [38], [35], [29], [31], [37], [36] of the 

most popular 2nd generation blockchain platforms. 

 
Table 1. Characteristics of 2nd gen. blockchain platforms. 

BC platform Industry 
focus 

Consensus 
protocol 

Programming 
language 

Permissioned/ 
permissionless 

Transactions 
per second 

Native 
currency 

Ethereum Cross-
industry 

PoW Solidity permissionless ~15 + 

Hyperledger 
Fabric 

Cross-
industry 

pluggable Go, Java, 
JavaScript 

permissioned >1000 - 

Corda Cross-
industry 

RAFT, BFT Java, Kotlin permissioned >100 - 

Tendermint General 
purpose 

BFT Any via ABCI permissionless >10000 - 

NEM Services-
oriented 

Proof of 
Importance 

Java and C++ 
via API 

permisionless >100 + 

Cardano Cross-
industry 

Ouroboros 
(PoS) 

Solidity, 
Plutus 

permissionless >1000 + 

EOS Cross-
industry 

delegated 
PoS 

C++ permissioned >1 Million + 

Stellar Financial 
services 

SCA (type of 
FBA) 

Multilang. via 
API 

based on 
proliferated trust 

>1000 + 

NEO Smart 
Economy 

Delegated 
BFT 

Multilang. via 
plug-ins 

permissioned >1000 + 

 

Considering these various characteristics as well as the size of active developer 

community and user base, time of successful operation, vulnerabilities history, 

choosing of blockchain platform for a particular scenario is not a trivial task. 

One of the critical characteristics for transaction-intensive application is network 

throughput – i.e. transactions per second a blockchain can pull off. While comparing 

blockchain platforms’ performance in registering simple monetary transactions, 

provided they have native currency, may be easier (although information provided by 

[21] shows significant discrepancies between claimed and registered performance), 

transaction throughput of smart contracts implementing more sophisticated business 
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logic in general should be tested on the basis of specific scenarios either by simulation 

or by exploring production environment. 

Consensus protocols such as Proof of Work (PoW) provide more secure environment 

as it requires more than half (51%) of hash rate to take over the network, while 

Byzantine fault tolerance (BFT) can operate only with less than one third of 

malicious/faulty nodes. There are modifications of BFT or Proof of Stake (PoS) 

protocols which increase security. However, PoW protocol requires enormous amount 

of computational power and in consequence is one of major limiting factors for network 

performance and scalability. The PoS protocol in this regard is much more lightweight 

and ensures adequate level of security (by slashing staked wealth in case of malicious 

actions), but network with PoS may hinder acceptance of users if all they want is using 

provided services without staking (i.e. effectively freezing) their monetary assets. 

Blockchains with native cryptocurrency may facilitate the implementation of trading 

mechanism through the use of smart contracts but may have additional vulnerabilities 

related to malicious activities directed to take ownership of coins. For blockchain 

platforms without native currency, tokens may be implemented through smart contracts 

which could be specifically tailored to the specific application scenario. 

The ability to use general-purpose widely-known programming languages for smart 

contract development is a huge advantage as compared to blockchain platform-specific 

language, however special measures must be deployed to ensure deterministic outcome 

of transactions accounting for non-deterministic nature of general-purpose languages 

code. 

Some of the blockchain platforms have specific disadvantages like NEM, which, while 

being the most secure, according to numerous experts, and highly scalable, uses off-

blockchain smart contract code, which makes it less decentralized, or Stellar, which 

only allows for simple, non-Turing complete smart contracts such as ICOs. 

 

Ethereum blockchain platform remains one of the best known and widely used 

platforms for smart contract deployment despite the major drawback – the network is 

already operating at 100% capacity and this is the limiting factor on the number of 

transactions per second it is capable to perform. To expand network capabilities, 

improve scalability, increase security and reduce energy consumption due to PoW 

consensus protocol, Ethereum platform is going to get the massive upgrade. Ethereum 

2.0 (Eth2) will change the consensus protocol to the Proof of Stake and introduce shard 

chains which will allow for parallel transaction processing. This shift to the new version 

will be performed in several phases with the launch of the main chain, registering 

validators and stakes on the first phase expected to happen in 2020, introducing shard 

chains and eventually moving entire Ethereum user base on the new network in 

subsequent phases. The entire upgrade is expected to be achieved in about two years 

[32]. 

Hyperledger Fabric is of particular interest being the first blockchain platform to 

introduce the execute-order-validate architecture which separates the transaction flow 

into three steps: execution, ordering and validation which may be run on separate 

entities in the system. In contrast, all previous permissionless and permissioned 

blockchain systems use order-execute architecture which means that transactions are 

ordered first using a consensus protocol, and then executed on all peers sequentially in 

the same order which seriously limits the effective throughput [3].  
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4 Proposed model of a smart contract for electricity 
exchange on Ethereum blockchain 

For smart contract development we used methodology described in [6], appropriate for 

industrial-strength blockchain application design and implementation. 

The process involves three stages:  

• analysis stage 

• design stage 

• implementation stage 

 

In the analysis stage we analyzed the requirements, identified involved entities, their 

roles and types of interaction (Fig. 1) for the deployment and usage of the electricity 

exchange smart contract. 

 
Fig. 1. Analysis stage of the smart contract. 

Community representative deploys smart contract on the blockchain along with initial 

information: addresses of contract users accounts, approval threshold (percentage of 

users needed for approval) and minimal power offer required. 

Community members approve contract by using multisignature scheme and when 

approval threshold is reached, the contract is activated. Users, who have power surplus 

can make offer to share that power and users who are in the need of power can make 

requests to consume it. When power request transaction is recorded on the blockchain, 

releasePower event is dispatched which may act as activating signal for smart device 

to release power to the consumer. 

Additional users may be added at a later time. Smart contract can be stopped and 

resumed. Initiation of these actions is carried out by community representative. New 

users and the changing of contract state are also approved by members using 

multisignature scheme. 
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In the design stage entities’ attributes were modelled as state variables and interactions 

between entities as functions.  

We used following design patterns to circumvent certain common security 

vulnerabilities of smart contracts like reentrancy and unauthorized actions [28], [16]:  

• finite state machine  - for ensuring finite number of states contract could take, 

and to restrict certain function to certain states, the states are presented in Fig. 

2; 

• access restriction – for ensuring that only certain users (contract owner) or users 

with certain status (users, who are approved by other members) are allowed to 

use specific functions; 

• locking – for ensuring that state variables could not be altered by other users, 

when one of them is invoking a function which changes values of such variables. 

 
Fig. 2. State diagram of the smart contract. 

In the implementation stage we implemented smart contract based on the state 

variables and functions identified in the design stage (Fig. 3). For implementation we 

used high-level Solidity language. 

By designing this smart contract, the assumption was made that all prosumers have the 

capacity to accumulate produced energy by employing batteries and there is no 

increasing excess of power over period of time. This allows for exchanging discrete 

units of power (as measured in kWh for example) and consume all produced energy 

inside the community. 
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Fig. 3. Implementation stage of the smart contract. 

Further directions for refinement of this model would be incorporating appropriate 

energy trading mechanism to expand the model for continuous power exchange scheme 

without the need of power accumulation capacities. 

5 Empirical research of smart contract vulnerabilities 
within Ethereum network 

Issues related to the security of information systems are particularly significant for 

business environments due to the importance and value of resources controlled by these 

systems. They are also an important field of research for the scientific community. 

While the security of traditional information systems is a fairly well-developed matter, 

the emergence of new technologies, the use of which has not been fully tested, creates 

a further need for in-depth research and analysis. In particular, the presented research 

is focused on the Ethereum blockchain and smart contracts technologies employed to 

manage energy infrastructure. 

In a recent couple of years, i.e. since the popularization of the idea of smart contracts, 

a whole series of works on the security of this type of software were produced. More 

and more potential vulnerabilities and threats are also known. The importance of this 

topic has increased when the first successful attacks started [25]. Those attacks made 

the public aware that the significant real value is at stake. 

Much theoretical and practical work has been done since then to ensure increased 

safety. An example of practical actions includes improvements in the Ethereum Virtual 

Machine (EVM) construction and changes to the Solidity language. Nevertheless, the 

research area remains open. New threats will certainly be discovered. This is due, for 
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example, to the fact that the blockchain infrastructure and programming languages in 

which smart contracts are created are currently being intensively developed. It is also 

worth noting that new blockchain platforms offering the possibility of performing 

logical operations in conjunction with transactions, especially Turing-complete, are 

constantly emerging [19]. 

5.1 Research workflow 
The presented research is based on the three-factor approach. First, a critical literature 

review is done to identify potential threats and blockchain-based projects related to the 

energy sector. Second, the evidence from the experimental analysis gathered and 

organized using third-party tools. The test set of applications results from the first part 

of the study. Third, a theoretical experiment in the computing economy field is 

provided. The experimental setting is the effect of an analysis and conclusions drawn 

from the second part of the research. 

 
Fig. 4. The research workflow. 

The ordered steps of the study are shown on Fig. 4. In this research, we focused on 

smart contracts’ vulnerabilities. The filtered set of selected contracts represent only the 

cases of electricity sector applications. Their characteristics are described in detail in 

Section 5.5.1. 

5.2 Initiatives for Peer-to-Peer energy markets 
In this section a short summary of the idea and the most notable projects related to 

creation of a P2P (peer-to-peer) energy markets are given. 

A smart grid is a utility grid that includes a variety of elements such as smart meters, 

smart appliances, multiple inputs, and output facilities with the ability to balance itself 

both at the micro and macro scale. The future of a utility grid involves the process of 

creating a hybrid with the original infrastructure. It means that the basic grid is enriched 

with the means of exchanging information between grid nodes, as well as the nodes 

themselves must have at least the functionality to monitor their internal state. 

Early ideas of connecting the smart grids with blockchain infrastructure have emerged 

in 2016 and were developed a year later [15], [18]. Some small projects have been 

carried out so far, but scholars omit the impact of blockchain architecture on grid 

security. In our opinion, the research on the implication of blockchain security 

characteristics applied to the smart grid solutions is an important challenge. 

Test set assembly 
Vulnerability 

analysis 

Energy contract 

security modelling 

(5.3) 

Experimental 

contract 

development (6) 

Conducting 

experiments 
Conclusions 
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A very extensive analysis of energy sector blockchain projects has been presented in 

[22]. Two related solutions are offered in [13] that are named Pando and Exergy. Pando 

enables utilities and retailers to introduce an energy marketplace. All the members of 

the community can trade energy. The exchange allows achieving of consumers' goals 

as well as maximizes community energy utility. The application is simply deployable, 

highly extensible, and flexible. 

Another offering [12] of the blockchain-based open-source and customizable energy 

exchange. The company develops the D3E energy exchange engine which may be used 

by communities and other platforms. The exchange is designed with an emphasis on 

supporting environmental protection and green energy production. 

5.3 Threats 
A resemblance with the Internet of Things (IoT) exists regarding the safety of energy 

applications. Some of the home appliances that allow measuring or controlling power 

consumption are treated as specific IoT components. Two types of issues are crucial 

both for IoT and smart grids which are security and privacy issues [11]. 

5.4 Related works 
Currently, only a very limited number of works is devoted to the security of electricity 

sector-related blockchain applications. The early papers that deal with the issue of smart 

contracts security are dated back in the year 2016. Then, the first attempts to formally 

verify the soundness of the code were proposed [7]. Additionally, a survey on Ethereum 

attacks has been conducted [5]. It was an important milestone as on the one hand, it 

raised the problem of the growing number of security incidents related to the network 

and on the other hand, it showed that the whole blockchain construction deals with the 

whole typology of potential vulnerabilities. 

In 2017 another incident after DAO Hack took place. It was the Parity wallet security-

hole. It was analyzed among others by [23]. [8] makes the gas cost analysis of running 

smart contracts. They identify 7 gas-costly patterns and group them into 2 categories. 

They also propose and develop GASPER, a new tool for automatically locating gas-

costly patterns by analyzing smart contracts’ bytecodes. Their results show that some 

of the patterns are widespread within the smart contracts population. The issue of 

consuming gas is vital as it leads most of the developers to the introduction of the code 

neglecting the quality and security requirements. 

In [24] blockchain is leveraged to a platform that facilitates trustworthy data provenance 

collection, verification, and management. The system utilizes smart contracts and is 

secure as long as the majority of the participants are honest. The last condition is the 

general requirement for any blockchain setting. The paper of [9] presents a novel way 

to permit miners and validators to execute smart contracts in parallel. It shows that a 

speedup of 1.33x can be obtained for miners and 1.69x for validators with just three 

concurrent threads. This kind of research introduces major innovation to smart contract 

engines. On the other hand, the decentralized and parallelized platforms are to be even 

more vulnerable, especially on the account of more complicated code and unpredictable 

effects. 

[1] is a systematic study of main topics addressed in conducted researches (metanalysis) 

that are related to smart contracts. It shows that there are four main streams of topics. 

These key issues are codifying, security, privacy, and performance issues. The texts 

that dealt with these groups of problems consisted of 67% of analyzed papers. This 

result is vital as it highlights the crucial aspects of smart contract safety. 
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The problem of information privacy in the context of blockchain and smart contracts is 

also tackled in the [17] text. 

5.5 Vulnerabilities analysis results 
In this section the analysis of available Solidity source code of projects created to work 

within the energy sector is presented. The general characteristics of the test set is given. 

The specific results of vulnerabilities detected are presented as well. 

5.5.1 Test set and tools 

The test set included 6 applications together with 60 smart contracts. These are all the 

thematically related projects identified on the basis of related works and projects review 

that were available as open-source. The overall number of lines of code is 4 978 and 

the source lines of code (SLOC) equivalent totals 4 121. All the source codes were 

generated between January 2018 and November 2019. The details about the test set 

items are presented in Table 2. 

The work of [4] presented the survey of existing tools for supporting the development 

of secure smart contracts and analysis of smart contracts. As there are quite a number 

of different tools with various capabilities, the tools we have chosen were based on 

public availability, and the ability to detect differentiated security issues. They were 

positively assessed and have advantages that include a rich library of known 

vulnerabilities, threats categorization, as well as an associated knowledge base. 

 
Table 2. Test set characteristics. 

Application Name Latest version date Number of 
files 

Number of 
contracts 

External libraries 

Carbos 08/04/2019 6 6 0 

SunContract 27/11/2019 2 8 0 

Grid+ 20/12/2018 7 7 0 

GoGreenContract 19/02/2019 1 2 0 

WePowerNetwork 28/01/2018 19 22 1 

HivePower 18/05/2018 17 15 2 

TOTAL  52 60 3 

5.5.2 SmartCheck 

In the preliminary research we acquired all analysis tools described in the literature. We 

rejected these that were outdated or out-of-order. Out of the three working tools the 

SmartCheck provides the most advanced results. 

The SmartCheck [26] tool has been used to extensively test the smart contracts for 

potential threats. The tool is capable of indicating an impressive list of known 

vulnerabilities from numerous categories. It also warns about improper programming 

practices resulting in poor code quality. It is available online which makes the analysis 

a straightforward task. This tool is described in detail in [27].  

The statistics obtained from the performed analysis are collected in Table 3. The table 

also shows the severity levels of the detected code malpractices. The total errors column 

shows the number of problems identified by the tool. The errors per SLOC is the result 

of our own calculations based on the total errors values. The severity categorization 

comes from the analysis tool with little downgrade adjustment of less critical 

malpractices. 
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Table 3. SmartCheck analysis results. 

Application Name Total errors Errors per SLOC Severity 1 Severity 2 Severity 3 

Carbos 22 0,06 21 1 0 

SunContract 156 0,43 154 2 0 

Grid+ 216 0,38 216 0 0 

GoGreenContract 13 0,10 13 0 0 

WePowerNetwork 208 0,11 203 4 1 

HivePower 90 0,11 89 0 1 

TOTAL 705  696 7 2 

 

In Fig. 5 the relations between the number of code lines and the number of detected 

malpractices are presented. Markers on the graph represent singled code files. The data 

reflects the information presented in Table 3. It is shown with more details because in 

the figure the files are the errors aggregation level instead of the whole projects. The 

graph reveals that frequently there is a visible linear relation between the length of the 

contract code and potential programmer mistakes. The inclinations of the lines are 

different for particular applications. It may reflect different backgrounds, experiences, 

and levels of programmers as well as expose their coding habits and style. These habits 

and style approaches may not always be best suited for the Solidity and the way of 

recommended contract construction. 

 
Fig. 5. The relation between the number of code lines and the number of detected flaws 

(SmartCheck). 

The major part of detected issues, marked as low severity level (1), is related to bad 

coding practices and is easily remedied by following SmartCheck knowledge base 

recommendations. 
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The high (3) and middle (2) severity level vulnerability categories, as well as low-level 

issues (per SmartCheck) which are related to increased consumption of gas, as this is 

an important aspect for efficient electricity trading mechanism implementation, are 

presented in Fig. 6. 

 
Fig. 6. Frequency of high-middle severity and low severity level vulnerabilities with 

increased gas consumption as detected per SmartCheck. 

5.5.3 Other tools and conclusions from the empirical contracts testing 

Maian [20] is another publicly available tool that may be used to analyze the security 

of Solidity contracts. Unlike the SmartCheck it is not accessible online and it is no 

longer maintained. It is able to recognize three types of code vulnerabilities. The three 

types of threats are related to the potential behavior of the contracts in the event of some 

extreme situations. These types are greediness, suicidality, and prodigality. 

Although the tool is no longer actively developed its code is open-sourced. As part of 

our study, we managed to fix the tool code and arrange the inconsistencies related to 

the changes in the Solidity as well as Ethereum Virtual Machine revisions. Moreover, 

we extended the functionality to automatically detect the Solidity version in order to 

use the appropriate compiler (solc). 

The results of the tool are uniform yet disappointing. Throughout the analysis of the 

whole set mentioned in Section 5.5.1 the behavior of only one contract has been 

identified as greedy (Grid+). No other vulnerabilities were discovered. 

A similar situation is with the Oyente [14] tool. The trials with this tool brought no 

significant results. 

We managed to make several important insights resulting from the analysis of results 

obtained during the process described in Section 5.5.2. The main points include: 

the catalog of statistically most significant vulnerabilities evolves due to common 

knowledge, EVM improvements, and programmers’ maturity. 

As a consequence, the severity of the security vulnerabilities and programming errors 

change in time due to such factors as programmers’ consciousness of the threats, 

general skills, and knowledge level as well as the development stage of the Ethereum 

network. 

Aside from solving the major vulnerability issues (marked as severity levels 2 and 3), 

which were not frequent cases, the other most relevant cases for improvement are with 

code using loops with arrays or mapping types and in consequence resulting in the 

unpredictable expenditure of gas. 
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Contracts with loops do have another aspect of risk to consider, and this is especially 

important for P2P electricity trading in auctions: running such contracts potentially 

might cost huge amounts of gas, however, transactions with high gas expenditure are 

less likely to be picked by miners and included in a block, and this certainly could 

hinder smooth operation of an auction. 

In consequence, the provisioning and reception of the energy might be perturbed which 

may be dangerous both to the consumers and the infrastructure itself. 

The identified aspects allow the construction of another experiment that will be 

described in Section 5.6. 

5.6 Electricity trading contracts security and EVM gas 
consumption 

5.6.1 Experiment description 

A special smart contract was developed for the experiment. The creation of a model 

smart contract is a rational step as the experiment was to give the explanation for a 

general category of typical energy sector smart contracts. None of the contracts from 

the test set exemplified the expected properties of the whole category. Additionally, 

working on a specifically designed source code allows for greater flexibility in 

conducting experiments. The designed smart contract has several features to resemble 

the simplest operations of electricity market auction. This means looping through 

records with energy amounts and its prices provided for trading and updating energy 

amount values. Cryptocurrency transactions were not considered. 

Although loops are generally advised to be avoided in smart contract code altogether, 

practical auction implementation is hardly achievable without using them. Besides, 

such design allows measuring gas consumption with a certain amount of iterations and 

estimate the influence of recommended fixes for two vulnerabilities “extra gas 

consumption” and “costly loop” on gas cost. This, in turn, allows comparing obtained 

values with average transaction gas expenditure with the aim to estimate how many 

participant records could be operated upon with reasonable gas consumption. 

The average gas cost per transaction was calculated based on bitinfo.com real-time data 

(Table 4) and block gas limit on the Ethereum network which is very close to 

10 000 000. 

The following data structures were used for keeping market participant data: array of 

participant addresses which will be used to iterate through all participant records and 

mapping from addresses to struct type elements with energy amount and energy price 

values. Test data was generated for a number of participant records using integer 

numbers as a basis for conversion to address type and for amount and price values. 

 
Table 4. Average gas expenditure per transaction on the Ethereum network 

(bitinfocharts.com, 2020-04-28). 

Transactions avg. per 
hour 

Blocks avg. per hour Transactions avg. per 
block 

Gas avg. per 
transaction 

35 505 271 131 76 327 

5.6.2 Obtained results 

Within the experiment, 2 types of test were conducted: 
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1. Estimating gas expenditure of reading operations, where 3 values are read for 

each participant in each loop iteration: one value from address array and two 

values, amount and price, from corresponding struct elements. 

2. Same as above with the addition of updating amount value. Iteration count was 

chosen for reaching gas expenditure close to average transaction gas 

expenditure. A transaction basis fee of 21 000 gas is included in each 

measurement. 

The test results are presented in Fig. 7 and Fig. 8. 

 
Fig. 7. Gas expenditure of reading operations. 

Fig. 7 displays the gas expenditure of reading operations. Three variants of stopping 

the loop were used:  

1. based on array length value – bad practice and “extra gas consumption” category 

by SmartCheck, 

2. based on local variable value to which array length value was copied 

(recommendation of how to improve over the first variant), 

3. iteration limit set through function parameter as additional loop end condition; 

limiting loop iterations to known number is the recommendation of how to 

safeguard against the “costly loop” vulnerability category by SmartCheck. 

It is evident from the obtained results, that checking of local variable value in the loop 

condition does decrease gas expenditure as compared to checking array length value, 

and saving accumulates with more iterations. Checking for iteration limit as an 

additional loop condition only slightly increases gas expenditure as compared to less 

costly options from the first and the second. 
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Fig. 8. Gas expenditure of reading and updating operations. 

Reading and updating records’ values was done with two variants of stopping the loop: 

known number of iterations by checking local variable value and adding additional loop 

condition to limit iteration number. The results are represented in Fig. 8. The difference 

in the gas expenditure of both variants is negligible. However, for reaching average 

transaction gas expenditure, less than 10 reading and updating operation iterations can 

be performed as compared to performing only reading operations. In case there is a 

need for more operations in each loop iteration, the gas expenditure would be 

accordingly higher which means average transaction gas expenditure would be reached 

with an even lower number of iterations. 

5.7 Summary of experimental research and further directions 
Checking for Ethereum smart contract vulnerabilities and risks is not a trivial task, 

because there are few publicly available tools and most of them have very limited or 

very specific capabilities. 

In this work, we explored three tools, SmartCheck, Oyente, and Mayan. By testing 60 

smart contracts of 6 projects dedicated to the electricity sector, 706 vulnerability issues, 

and coding malpractices were found, 705 of them were detected by SmartCheck, 1 by 

Mayan, while Oyente bore no results. In addition, SmartCheck provided a three-level 

severity classification of flaws. As the major part of issues were low level, easily 

fixable, and were more as bad coding practice than the actual threat they were not 

included for further consideration. The results allowed creating a model contract source 

code that was used to estimate gas usage of two cases from low severity level (as 

categorized by SmartCheck), which concern high gas expenditure. 

Developers should be aware of gas usage when designing smart contracts for Ethereum 

platform with special care when writing the code, where using loops is inevitable, and 

follow the recommended practice, because not having control of loop iteration number 

may result in gas overuse. 

Using smart contracts for electricity auction trading is limited on the Ethereum 

blockchain network in terms of a feasible number of participating members. From 

experiment results, we can conclude, that electricity auction would be more suitable for 

trading between a small number of agents (~10) than between prosumers, whose 
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number would be certainly far greater, in which case transaction gas expenditure can 

reach levels which may not be attractive for miners to include in their blocks. 

Consequently, auction performance may not be in line with expectancy, and some more 

costly in terms of gas usage transactions may stall leading to unpredictable negative 

effects in the grid. Another important aspect is that the number of independent 

electricity providers for EU counties is rising due to the liberalization of the electricity 

market. For example, in Lithuania, it is 4 (households) and 11 (B2B) operators [10]. 

These numbers correspond well to the mentioned above number of agents. 

After the Ethereum platform upgrade to Ethereum 2.0 is finished a new evaluation of 

Ethereum blockchain for electricity auction trading will be needed, as network 

capacities and rules of game may change significantly. 

For evaluation of electricity auction trading on a blockchain with better performance 

characteristics the Hyperledger Fabric platform will be used. Additional argument for 

selecting this platform is it’s different execute-order-validate architecture as described 

in Section 3. As Hyperledger Fabric is a highly configurable modular platform, the 

impact of various configuration settings like block size, number of ordering nodes etc. 

on performance characteristics like throughput and latency will be tested. 
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Appendix Nr. 1. 
Used abbreviations: 

BFT – Byzantine Fault-Tolerance 

EVM – Ethereum Virtual Machine 

ICO – Initial Coin Offering 

PoS – Proof of Stake  

PoW – Proof of Work 

 


