
Vilnius University
Institute of Mathematics and

Informatics
L I T H U A N I A

INFORMATICS ENGINEERING (07 T)

MACHINE LEARNING BASED OPEN
SOURCE INTELLIGENCE INFORMATION
EXTRACTION AND ANALYSIS METHODS

Paulius Vaitkevičius

October 2020

Technical Report DMSTI-DS-T007-20-08

Vilnius University Institute of Data Science and Digital Technologies,
Akademijos str. 4, Vilnius LT-08663, Lithuania

www.mii.lt

http://www.mii.lt

Contents

1 Foreword . 3
2 Introduction . 3
3 Related Works . 5
4 Research Methodology . 6

4.1 Algorithms Used in the Experiments . 7
4.1.1 Character Embedding. 7
4.1.2 Recurrent Neural Network Layers.. 7
4.1.3 Prediction. 9
4.1.4 Stacking Ensemble . 9

4.2 Dataset . 9
4.3 Measures and Methods . 10

4.3.1 Classification Accuracy . 10
4.3.2 Welch’s T-Test . 11
4.3.3 Shapiro–Wilk Test . 11

4.4 Experimental Design . 11
5 Experimental Results . 12
6 Conclusions . 14
References . 15

DMSTI-DS-T007-20-08 2

1 Foreword

Research results presented in this technical report are directly related to the research aim
and object of the doctoral studies and future dissertation.

Research results presented in this technical report covers objective No 2 of the doc-
toral studies and future dissertation: replicating the results of state-of-the-art algorithms,
is presented.

Research aim and object of the doctoral studies and future dissertation are intro-
duced further in this section.

RESEARCH OBJECT, AIM, AND OBJECTIVES
OF THE DOCTORAL STUDIES

Research object:

1. Machine Learning and Deep Machine Learning algorithms for phishing
websites detection.

2. Adversarial Machine Learning algorithms.

Research aim: The research aim is to develop a new method for effective and
reliable phishing websites detection, based on Deep Neural Networks and
Adversarial Machine Learning algorithms.

Research objectives:

1. Performing literature review, analyzing state-of-the-art algorithms for phish-
ing website detection.

2. Replicating the results of state-of-the-art algorithms.

3. Proposing new and more effective method for phishing website detection.

4. Creating datasets for new experiments.

5. Conducting experimental research comparing the proposed method with
state-of-the-art algorithms.

2 Introduction

Phishing is a cybercrime built on social engineering which employs technical trickery and
masking as a trustworthy entity to steal sensitive user data, such as passwords, credit card
details, digital identity data from unsuspecting users. Phishers usually lure victims into
entering a fraudulent website by impersonating legitimate URL and sending it to the vic-
tim by email or SMS along with a threatening message, like notice of account termination
or illegal transaction [14]. Phishing attacks are still very successful nowadays, despite
DMSTI-DS-T007-20-08 3

many existing anti-phishing solutions. The Anti-Phishing Working Group (APWG) re-
ported as many as 2,172 unique phishing websites detected per day in 2019 with a 71.0%
increase during the last six years of monitoring [2]. Global losses from phishing activities
exceeded 3.5 billion USD in 2019, with a 29.6% annual increase and total global losses of
10.2 billion USD in the last five years, according to the FBI’s Internet Crime Complaint
Center [11]. This success is determined by the fact that phishers are professional adver-
saries who: (i) have the financial motivation, (ii) exploit computer illiteracy of ordinary
Internet users [1], and (iii) manage to learn from their previous experience and improve
their future attacks.

The scientific community has put much effort into solving the phishing websites’
URL detection problem during the last decade, seeing the ability to determine the mali-
ciousness of a website by evaluating its URL as a significant advantage. The number of
victims can be reduced, minimizing operational efforts by avoiding extensive use of more
complex methods such as content analysis of a website [3]. Many proposed methods at-
tempted to solve phishing websites detection as a supervised machine learning problem
on different phishing datasets with predefined features [5, 22]. These methods work well
on predefined dataset design but are sensitive to changing environment: phishers can
learn the most relevant URL features these methods employ and adapt their behavior to
avoid being detected [16]. In search of methods resilient to the changing environment, the
scientific community started to explore deep learning techniques with automatic feature
detection to identify complicated behaviors with new patterns of attack. Deep learning
algorithms developed rapidly in recent years and found many applications for problem
solving in different areas. Therefore, the hope of creating a resilient phishing websites’
URL detection method lies with these algorithms [3, 16].

To our best knowledge, no previous research involved methods, employing the en-
sembles constructed of RNN and CNN algorithms. The results of the literature review
and the well-known fact that ensembles of classification algorithms usually produce bet-
ter results than single algorithms, motivate us to go one step further and propose a new
method, based on the ensembles of RNNs, which would improve classification accuracy.

In this paper, we present the results of our experiment and answer these research
questions:

1. Do methods, composed of RNN ensembles, show significantly better classification
results in comparison with single RNN methods?

2. Do methods, composed of RNN ensembles, show significantly better results on
raw URL dataset in comparison with classical classification algorithms on the same
dataset with manually designed features? To answer this question, we compare
achieved results with the results of classical classification algorithms on the same
dataset from the authors’ previous paper [22].

The rest of the paper is organized as follows: In Section 3 we give a review of related
works. In Section 4 we describe our research methodology. In Section 5 we report our
DMSTI-DS-T007-20-08 4

Table 1: Accuracy of classical classification methods with predefined features.

Year Authors Classifier Phishing
URLs

Legitimate
URLs

Accuracy

2017 Marchal et
al. [15]

Gradient Boost-
ing

100,000 1,000 99.90%

2010 Whittaker et al.
[26]

Logistic Regres-
sion

16,967 1,499,109 99.90%

2011 Xiang et al. [27] Bayesian Net-
work

8,118 4,780 99.60%

2018 Cui et al. [7] C4.5 24,520 138,925 99.78%
2013 Zhao et al. [30] Perceptron 990,000 10,000 99.49%

experiment results. We conclude the paper in Section 6.

3 Related Works

The first methods for phishing websites’ URL detection were created more than a decade
ago and included blacklisting techniques and heuristic approaches. There still are a few
initiatives to use a centralized phishing websites’ URLs blacklisting solutions (e.g., Phish-
Tank2, Google Safe Browsing API 3). Although these methods were proven unavailing
because phishing websites have a very short lifespan (usually not more than a day) and
it takes time to detect, report, confirm, and publish a malicious URL in a blacklisting
database [24].

Later, as an improvement on blacklisting methods, the heuristic methods were im-
plemented where the signatures of frequent attacks were identified and blacklisted for
the future use of Intrusion Detection Systems, giving these methods better generalization
capabilities and the ability to detect threats in previously unseen URLs [19]. Although
heuristic methods superseded simple blacklisting methods, they could not generalize to
all types of new threats [24].

More recent methods for phishing websites’ URL detection were based on the ap-
plication of classical supervised machine learning algorithms on phishing datasets with
predefined features. Best performing methods are enlisted in the table 1. These meth-
ods scored above 99.49% and were implemented using different types of classifiers: neu-
ral networks, regression, decision trees, ensembles, and probabilistic. Although these
methods work well on predefined dataset design but they are sensitive to changing en-
vironment: phishers can learn the most relevant URL features these methods employ
and adapt their behavior to avoid being detected [16]. It should be stated that methods
enlisted in the table 1 measure accuracy and use highly unbalanced datasets, therefore,
evaluating performance by accuracy does not reveal how these methods would perform
on more balanced datasets.

2https://www.phishtank.com/
3https://developers.google.com/safe-browsing/

DMSTI-DS-T007-20-08 5

https://www.phishtank.com/
https://developers.google.com/safe-browsing/

Table 2: Deep learning based classification methods accuracy.

Year Authors Classifier Phishing
URLs

Legitimate
URLs

Accuracy

2017 Saxe and Berlin
[18]

CNN 9,533,939 9,533,939 99.30%

2018 Vazhayil et
al. [23]

CNN-LSTM 58,050 58,050 98.90%

2018 Vazhayil et
al. [23]

CNN 58,050 58,050 98.70%

2017 Bahnsen et al. [3] LSTM 1,000,000 1,000,000 98.70 %
2019 Yang et al. [28] CNN-LSTM 1,021,758 989,021 98.50%
2019 Zhao et al. [29] GRU 240,000 150,000 98.50%

Most recent approaches use deep learning techniques, including Recurrent neu-
ral networks like Long Short-Term Memory networks (LSTM) or Gated Recurrent Unit
(GRU). The results of the best methods on balanced datasets are enlisted in table 2. Au-
thors of these papers built their work on the premise that deep learning methods can
automatically learn the feature representation from URL’s character sequence, without
using any predefined features. Additionally, Vazhayil et al. [23] have shown, that adding
CNN layers to the LSTM improves classification accuracy.

From the literature review, we can ascertain that blacklisting, heuristic, and classical
classification methods on datasets with predefined features are prone to learn a specific
dataset design and are not capable of safeguarding internet users from "zero-hour" at-
tacks. We can also see the potential of deep learning-based methods with automatic fea-
ture detection to achieve accuracies close to classical classification methods while having
the quality of being resilient to the changing environment and cope with "zero-hour" at-
tacks. Furthermore, we can see that the scientific community focuses on RNN and CNN
based methods for the qualities like having internal memory, the ability to find patterns
in raw data, and automatically learning the essential features from the data.

To our best knowledge, no previous research involved methods, employing the en-
sembles constructed of RNN and CNN algorithms. The results of the literature review
and the well-known fact that ensembles of classification algorithms usually produce bet-
ter results than single algorithms, motivate us to go one step further and propose a new
method, based on the ensembles of RNNs, which would improve classification accuracy.

4 Research Methodology

In this section, we describe our research methodology. We start by defining algorithms
used in the experiment and reasons for the algorithm selections (Subsection 4.1), later we
describe the dataset (Subsection 4.2), metrics and methods (Subsection 4.3) used in the
experiment. We finish this section by explaining how all previous sections are composed
to set up the experimental design for our research (Subsection 4.4). The results of our
experiment, designed according to this experimental design, are presented in Section 5.
DMSTI-DS-T007-20-08 6

4.1 Algorithms Used in the Experiments

In this subsection, we present the algorithms we used and explain in detail the configu-
ration of methods we composed and tested in our experiment.

We have chosen to employ RNN and CNN algorithms for the construction of our
method in order to utilize RNN’s properties of having a memory and CNN’s properties
of recognizing data patterns. Combined properties of these algorithms allow our method
to automatically learn the feature representation from URL’s character sequence, without
using any manually predefined features, thus increasing our method’s flexibility, as well
as resilience to the changing environment and "zero-hour" attacks.

Figure 1 provides a formal description of the architecture of our RNN-based meth-
ods as well as CNN-RNN hybrid methods [23, 28]. Each method consists of three main
parts: (i) input and embedding layers, (ii) different RNN (and in some methods addi-
tional CNN) layers, and (iii) a dense layer for making a final prediction. We will describe
all parts in more detail in the following subsections.

4.1.1 Character Embedding.

Instead of extracting URL features manually, we aim to learn a representation directly
from the sequence of URL characters, building our methods on the premise that RNNs
can learn essential features and sequential dependencies of the data automatically [3, 18,
28]. First, we encode each URL character in its ASCII code and set the URL size to 256
characters. If the URL is shorter than 256 characters, we pad it with zeroes in the front,
and if it is longer, we cut off characters from the beginning of the URL. Later, character
encoded URL vectors are provided as inputs to the embedding layer, which optimizes
character vectors to better reflect their semantic meaning, by being optimized jointly with
the rest of the model during the learning process [25]. The embedding layer parameters
are described in table 3.

4.1.2 Recurrent Neural Network Layers.

In our experiment, we use four different recurrent neural networks:

• Long Short-Term Memory network (LSTM), which is a well-known implementa-
tion of RNN with a designated memory, widely used by the scientific community
in various fields. LSTM overcomes a well known long-term dependency problem
of RNNs by implementing a specific memory called “cell state”, regulated by struc-
tures called gates [10].

• Long Short-Term Memory network with Peepholes (LSTM-P), which is a modifica-
tion of the LSTM by adding so-called “peephole connections”, allowing gate layers
to look at the cell state [8].

• Gated Recurrent Units (GRU), which is a noticeable modification of the LSTM, com-
bining the forget and input gates into a single “update gate”, resulting in more sim-

DMSTI-DS-T007-20-08 7

Table 3: Hyper-parameters of the models.

Method Hyper-parameters
LSTM Embedding output dimension: 32; Embedding regularizer: L2

penalty; Output size: 32; Optimizer: Adam (learning rate: 0.01,
epsilon: 1e-07); Dropout: 0.5; Penalty: 0.001; Epochs: 40;

LSTM-P Embedding output dimension: 32; Embedding regularizer: L2
penalty; Output size: 32; Optimizer: Adam (learning rate: 0.01,
epsilon: 1e-07); Dropout: 0.5; Penalty: 0.001; Epochs: 64;

GRU Embedding output dimension: 32; Embedding regularizer: L2
penalty; Output size: 32; Optimizer: Adam (learning rate: 0.01,
epsilon: 1e-06); Dropout: 0.5; Penalty: 0.001; Epochs: 40; Loss
function: binary cross-entropy;

Simple
RNN

Embedding output dimension: 32; Embedding regularizer: L2
penalty; Output size: 32; Optimizer: Adam (learning rate:
0.001, epsilon: 1e-08); Dropout: 0.5; Penalty: 0.001; Epochs: 16;

CNN-
LSTM

Embedding output dimension: 64; Embedding regularizer: L2
penalty; Output size: 64; Optimizer: Adam (learning rate: 0.05,
epsilon: 1e-06); Dropout: 0.5; GRU layer dropout: 0.35; Penalty:
0.001; Epochs: 40; Kernel size: 3; Pooling size: 4; Convolutional
layer activation function: ReLU;

CNN-
GRU

Embedding output dimension: 64; Embedding regularizer: L2
penalty; Output size: 64; Optimizer: Adam (learning rate:
0.005, epsilon: 1e-07); Dropout: 0.5; GRU layer dropout: 0.25;
Penalty: 0.01; Epochs: 40; Kernel size: 5; Pooling size: 8; Con-
volutional layer activation function: ReLU;

pler model [6].

• Simple RNN cell4 based neural network with no explicit memory implementation,
which is known for not learning “long-term dependencies” very well due to input
noise and vanishing gradient problems [4].

Additionally, we use CNN and RNN hybrids, such as CNN-LSTM and CNN-GRU
methods [23]. These hybrid networks benefit from CNN properties to find patterns in
data, prior to feeding the data to RNN cells, as depicted in figure 1. We add one 1D
convolutional layer and one max-pooling layer between the embedding layer and the
RNN layer. We use a dropout regularization layer5 before the last dense layer to prevent
overfitting [21].

Additionally, the Naïve-Bayes probabilistic classifier [13] was trained directly on
character encoded strings and used in the ensembles as well.

We use binary cross-entropy loss function, batch size of 200 and dropout rate of 0.5
for all models in our experiment. Other dissimilar hyper-parameters used in our models
are provided in table 3.

4As described in https://www.tensorflow.org/api_docs/python/tf/keras/layers/SimpleRNNCell
5https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dropout

DMSTI-DS-T007-20-08 8

https://www.tensorflow.org/api_docs/python/tf/keras/layers/SimpleRNNCell
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dropout

Figure 1: Configuration of our methods

p
a
y
p
a
l
.
o
r
g

16
1
25
16
1
12
50
15
18
7

0
0

...

...
0

…
...
...
...

…
...
...
...

…
...
...
...

σ	 0.89

C
on

vo
lu

tio
na

l L
ay

er
 (1

D
)

…
...
...
...

M
ax

 P
oo

lin
g

La
ye

r

URL
Character
encoded
URL

Input
layer

Embedding	
layer

CNN
layers

[RNN]
layer

Dense
layer Prediction

4.1.3 Prediction

is made by the sigmoid function [9] in the last dense layer of the network, giving the real
value between 0 and 1, which corresponds to the prediction probability to our classes (’0’
for legitimate URL, ’1’ for phishing URL).

4.1.4 Stacking Ensemble

is used in our experiment to combine predictions of previously trained methods into a
unified predictor. As described in the figure 2, a new algorithm called "meta classifier"
(in our case based on Logistic regression [12]) learns how to combine the predictions from
multiple methods and produce a final prediction. The meta-classifier is trained based on
predicted probabilities instead of class labels. We used MLxtend 0.17.0 library to build
our stacking ensemble methods6.

4.2 Dataset

In our experiment, we used a dataset from Mendeley Data portal7, published by Choon
Lin Tan (Universiti Malaysia Sarawak) in March 2018. This balanced dataset contains
5,000 phishing and 5,000 legitimate websites URL samples. Additionally, a total of 48 fea-
tures were extracted from these websites by the authors [5]. We have chosen this dataset
for our experiment so that we could compare the performance of the proposed method

6http://rasbt.github.io/mlxtend/
7https://data.mendeley.com/datasets/h3cgnj8hft/1

DMSTI-DS-T007-20-08 9

http://rasbt.github.io/mlxtend/
https://data.mendeley.com/datasets/h3cgnj8hft/1

Figure 2: Configuration of Stacking Ensemble methods

Tr
ai
ni
ng
	d
at
a

C1

C2

C3

...

Cn

P1

ClassifiersDataset Predictions

P2

P3

...

Pn

Logistic
Regression

Meta
Classifier

P

Final
Prediction

with the performance of classical classification algorithms from our previous paper [22],
where the same dataset was used.

4.3 Measures and Methods

4.3.1 Classification Accuracy

in our experiment is the rate of phishing and legitimate websites which are identified
correctly with respect to all the websites, defined as follows:

ACCURACY =
TP + TN

TP + FP + TN + FN
, (1)

where

• TP - number of websites, correctly detected as phishing (True Positive),

• TN - number of websites, correctly detected as benign (True Negative),

• FP - number of legitimate websites, incorrectly detected as phishing (False Posi-
tive),

• FN - number of phishing websites, incorrectly detected as legitimate (False Nega-
tive).

We chose classification accuracy as our classification quality quantification metric
because: (i) most other researchers use classification accuracy to define results of their ex-
periments (see Section 3), therefore the comparability of research results is homogeneous
throughout our work; (ii) in our experiment, we used a dataset with equal class distribu-
tions (there is no disparity between the number of positive and negative labels) therefore
DMSTI-DS-T007-20-08 10

we do not have the majority and minority classes; (iii) we used cross-validation function
with stratification option, which generates test sets that contain the same distribution of
classes, or as close as possible. In these circumstances, classification accuracy is a useful
non-bias measure.

4.3.2 Welch’s T-Test

in our experiment was used to determine whether the means of classification accuracy
results produced by any two classifiers have a statistically significant difference. We used
scipy.stats package for Python to perform a T-test.

4.3.3 Shapiro–Wilk Test

was used to check whether samples came from a normally distributed population [20].
We used scipy.stats package for Python to perform a Shapiro–Wilk test.

4.4 Experimental Design

In this subsection, we present the experimental design we employed to perform the ex-
periment. The objective is to train all the classifiers from Section 4.1 on our chosen dataset
from Section 4.2 for their best possible classification accuracy described in Section 4.3.1,
and to compare classification results. The experiment was divided into two parts: (i)
training the classifiers, (ii) comparing the classification results.

We train the classifiers by taking these steps:

1. Configure the classifier in Python’s 3.7.5 environment using Tensorflow-GPU 2.0.0
library8; we use a computer with Nvidia GeForce RTX 2080 Ti graphical card, Intel
Core i7-4770 3.40GHz processor, and 16 Gb of RAM to perform our experiment.

2. Perform the exhaustive grid search to find the best fitting hyper-parameters, using
the Scikit Learn 0.22.0 library9 [17].

3. Train and test the classifier using a cross-validation function with 10 stratified folds
from the Scikit Learn 0.22.0 library. Repeat this step 3 times with different seed to
get 30 classification accuracy measures.

4. Perform a Wilk-Shapiro test, as described in Section 4.3, to check if the accuracy
scores are normally distributed. If not, take action to normalize the values (e.g.,
repeating the training and testing step).

5. Save the results for further actions.

We compare classification results by taking these steps:

8https://www.tensorflow.org
9https://scikit-learn.org/

DMSTI-DS-T007-20-08 11

https://www.tensorflow.org
https://scikit-learn.org/

1. Using Welch’s T-test, described in Section 4.3.2, check every possible pair of classi-
fiers if their mean classification accuracies have statistically significant differences.

2. Arrange all classifiers by their mean classification accuracy in descending order.

3. Evaluate groups of methods that mean classification accuracies have no statistically
significant differences.

4. Plot all results in the box plot.

5. Compare the results with our other experiment with classical classification algo-
rithms on the same dataset with manually extracted features [22].

For each algorithm, we perform an experiment with all the steps described above.

5 Experimental Results

In this section, we present the results of our experiment, conducted following the research
design described in Section 4.4. We present all RNN-based methods and five best RNN
ensemble-based methods of our experiment in the figure 3. In this box-plot, the yellow
dotted lines group the algorithms which mean accuracy results (assessed with Welch’s
T-test, as described in section 4.3.2) have no statistically significant differences with each
other.

From this diagram, we can see that:

• the results of ensembles 1, 2, and 3 have no statistically significant difference, but
are significantly better than all other models;

• the results of ensembles 4, 5, and CNN-LSTM have no statistically significant differ-
ence, but are significantly better than GRU, CNN-GRU, LSTM, LSTM-P, and Simple
RNN methods;

• the results of GRU, CNN-GRU, LSTM, and LSTM-P have no statistically significant
difference but are significantly better than the Simple RNN method.

• Simple RNN method demonstrated the worst result of RNN-based methods. This
result is consistent with the theory, provided in section 4.1, stating that simple RNN
with no specifically implemented memory can not learn “long-term dependencies”
and is inferior in comparison with LSTM or GRU.

In table 4, we compare the results of this experiment (in the highlighted font) with
our previous experiment, were we applied classical classification algorithms on the same
dataset with manually extracted features [22].

Welch’s T-test has shown that Ensembles 1 - 3 give the results of the same significance
as Gradient Tree Boosting and AdaBoost, applied on the same dataset only with manually
selected features. We can see from the results that single RNN methods score 1 - 2 %
DMSTI-DS-T007-20-08 12

Figure 3: Classification results

Simple
RNN LSTM-P LSTM CNN-GRU GRU CNN-LSTM Ens.	1:

All
models

Ens.	2:
LSTM,	
LSTM-P,
GRU,	

CNN-LSTM,
CNN-GRU

Ens.	3:
LSTM,	
GRU,	

CNN-LSTM,
CNN-GRU

Ens.	4:
CNN-LSTM,
CNN-GRU,
Naïve-
Bayes

Ens.	5:
LSTM,	
LSTM-P,	
GRU

DMSTI-DS-T007-20-08 13

Table 4: Classification results

Method Accuracy
Gradient Tree Boosting 0.9742
Ensemble 1 (LSTM, LSTM-P, GRU, CNN-LSTM, CNN-
GRU, Naïve-Bayes)

0.9730

AdaBoost 0.9728
Ensemble 2 (LSTM, LSTM-P, GRU, CNN-LSTM, CNN-
GRU)

0.9725

Ensemble 3 (LSTM, GRU, CNN-LSTM, CNN-GRU) 0.9721
Random Forest 0.9715
Multilayer Perceptron 0.9671
CNN-LSTM 0.9612
Classification and Regression Trees 0.9574
Ensemble 4 (CNN-LSTM, CNN-GRU, Naïve-Bayes) 0.9657
Ensemble 5 (LSTM, LSTM-P, GRU) 0.9634
Support Vector Machine 0.9549
GRU 0.9515
CNN-GRU 0.9503
LSTM 0.9471
LSTM-P 0.9443
Naïve-Bayes 0.9177
SimpleRNN 0.8958
Naïve-Bayes (this experiment) 0.6056

lower accuracies than the best ensemble-based methods. We also observe that Ensembles
1 - 3, which scored the best accuracy results, have a higher number of RNN methods,
and this confirms theoretical results that the higher number of independent classifiers
improve ensemble classification accuracy. We can also see from our results that RNN
without memory (SimpleRNN cell) performs worse of all RNNs. The conclusions of our
experiment results are provided in Section 6.

6 Conclusions

In this paper, we have proposed a new ensemble-based method for phishing websites’
URL detection. We have presented the results of our experiment, where we have com-
pared our method with other different types of methods, based on RNNs, CNNs, and
different hybrid methods, consisting of these algorithms. From our research, we draw
the following conclusions, which are valid on the dataset we have used:

1. Our proposed method, employing RNN-based ensembles, outperform single RNN
methods by at least 0.02 difference in classification accuracy, which is statistically
significant.

2. Our proposed method performs as well as Gradient Tree Boosting and AdaBoost
with human extracted features on the same dataset. The accuracies between our

DMSTI-DS-T007-20-08 14

method, Gradient Tree Boosting, and AdaBoost ensembles have no statistically sig-
nificant difference, according to Welch’s T-test.

3. Adding the CNN layer to the method increases classification accuracy by 0.01, and
this difference is statistically significant.

4. For phishing websites’ URL classification problem, RNNs with explicit memory
implementation, like LSTM and GRU, outperform classic RNNs without memory
by 0.06 difference in classification accuracy, which is statistically significant.

5. RNNs outperform simple probabilistic classifiers like Naïve-Bayes on URL charac-
ters sequence by 0.355 increase of accuracy. Additionally, Naïve-Bayes performs
significantly better on manually extracted features rather than string character se-
quences, with a 0.31 difference of classification accuracy.

References

[1] Adebowale, M., Lwin, K., Sánchez, E., Hossain, M.: Intelligent web-
phishing detection and protection scheme using integrated features of Im-
ages, frames and text. Expert Systems with Applications 115, 300–313 (jan
2019). https://doi.org/10.1016/J.ESWA.2018.07.067, https://www.sciencedirect.
com/science/article/pii/S0957417418304925?via{%}3Dihub

[2] Anti-Phishing Working Group, I.: Phishing Activity Trends Reports (2019), https:
//apwg.org/resources/apwg-reports/

[3] Bahnsen, A.C., Bohorquez, E.C., Villegas, S., Vargas, J., Gonzalez, F.A.:
Classifying phishing URLs using recurrent neural networks. In: 2017
APWG Symposium on Electronic Crime Research (eCrime). pp. 1–8 (2017).
https://doi.org/10.1109/ECRIME.2017.7945048, http://ieeexplore.ieee.org/

document/7945048/

[4] Bengio, Y., Simard, P., Frasconi, P.: Learning Long-Term Dependencies with Gradi-
ent Descent is Difficult. IEEE Transactions on Neural Networks 5(2), 157–166 (1994).
https://doi.org/10.1109/72.279181

[5] Chiew, K.L., Tan, C.L., Wong, K., Yong, K.S., Tiong, W.K.: A new hy-
brid ensemble feature selection framework for machine learning-based
phishing detection system. Information Sciences 484, 153–166 (may 2019).
https://doi.org/10.1016/j.ins.2019.01.064, https://www.sciencedirect.com/

science/article/pii/S0020025519300763?via{%}3Dihubhttps://linkinghub.

elsevier.com/retrieve/pii/S0020025519300763

[6] Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., Bengio, Y.: Learning Phrase Representations using RNN Encoder-Decoder for
Statistical Machine Translation. arXiv:1406.1078v3 (2014)

DMSTI-DS-T007-20-08 15

https://www.sciencedirect.com/science/article/pii/S0957417418304925?via{%}3Dihub
https://www.sciencedirect.com/science/article/pii/S0957417418304925?via{%}3Dihub
https://apwg.org/resources/apwg-reports/
https://apwg.org/resources/apwg-reports/
http://ieeexplore.ieee.org/document/7945048/
http://ieeexplore.ieee.org/document/7945048/
https://www.sciencedirect.com/science/article/pii/S0020025519300763?via{%}3Dihub https://linkinghub.elsevier.com/retrieve/pii/S0020025519300763
https://www.sciencedirect.com/science/article/pii/S0020025519300763?via{%}3Dihub https://linkinghub.elsevier.com/retrieve/pii/S0020025519300763
https://www.sciencedirect.com/science/article/pii/S0020025519300763?via{%}3Dihub https://linkinghub.elsevier.com/retrieve/pii/S0020025519300763

[7] Cui, B., He, S., Yao, X., Shi, P., Yao, X., He, S., Cui, B.: Malicious
URL detection with feature extraction based on machine learning. Interna-
tional Journal of High Performance Computing and Networking 12(2), 166
(2018). https://doi.org/10.1504/ijhpcn.2018.10015545, http://www.inderscience.
com/link.php?id=94367

[8] Gers, F.A., Urgen Schmidhuber, J.J., Cummins, F.: Learning to Forget: Continual
Prediction with LSTM. In: Proc. ICANN’99 Int. Conf. on Arti?cial Neural Network.
vol. 2, pp. 850–855. IDSIA (1999), http://www.idsia.ch/http://www.idsia.ch/

[9] Han, J., Moraga, C.: The influence of the sigmoid function parameters on the speed
of backpropagation learning. In: Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
vol. 930, pp. 195–201. Springer Verlag (1995). https://doi.org/10.1007/3-540-59497-
3_175

[10] Hochreiter, S., Urgen Schmidhuber, J.J.: Long Short-Term Memory. Neural
Computation 9(8), 1735–1780 (1997), http://www7.informatik.tu-muenchen.de/

{~}hochreithttp://www.idsia.ch/{~}juergen

[11] Internet Crime Complaint Center: 2018 Internet Crime Report. Tech. rep., Internet
Crime Complaint Center at the Federal Bureau of Investigation of United States of
America (2019), https://www.ic3.gov/media/annualreport/2018{_}IC3Report.

pdf

[12] Kleinbaum, D.G., Klein, M.: Introduction to Logistic Regression. In: Logistic Regres-
sion, pp. 1–39. Springer, New York, NY (2010). https://doi.org/10.1007/978-1-4419-
1742-3_1, http://link.springer.com/10.1007/978-1-4419-1742-3{_}1

[13] Lewis, D.D.: Naive (Bayes) at forty: The independence assumption in information
retrieval. In: ECML 1998: Machine Learning: ECML-98, pp. 4–15. Springer, Berlin,
Heidelberg (1998). https://doi.org/10.1007/BFb0026666, http://link.springer.

com/10.1007/BFb0026666

[14] Lin Tan, C., Leng Chiew, K., Wong, K.S., Nah Sze, S., Tan, C.L., Chiew, K.L.,
Wong, K.S., Sze, S.N.: PhishWHO: Phishing webpage detection via identity key-
words extraction and target domain name finder. Decision Support Systems 88, 18–
27 (2016). https://doi.org/10.1016/j.dss.2016.05.005, http://dx.doi.org/10.1016/
j.dss.2016.05.005

[15] Marchal, S., Armano, G., Grondahl, T., Saari, K., Singh, N., Asokan,
N.: Off-the-hook: An efficient and usable client-side phishing preven-
tion application. IEEE Transactions on Computers 66(10), 1717–1733 (2017).
https://doi.org/10.1109/TC.2017.2703808

DMSTI-DS-T007-20-08 16

http://www.inderscience.com/link.php?id=94367
http://www.inderscience.com/link.php?id=94367
http://www.idsia.ch/http://www.idsia.ch/
http://www7.informatik.tu-muenchen.de/{~}hochreithttp://www.idsia.ch/{~}juergen
http://www7.informatik.tu-muenchen.de/{~}hochreithttp://www.idsia.ch/{~}juergen
https://www.ic3.gov/media/annualreport/2018{_}IC3Report.pdf
https://www.ic3.gov/media/annualreport/2018{_}IC3Report.pdf
http://link.springer.com/10.1007/978-1-4419-1742-3{_}1
http://link.springer.com/10.1007/BFb0026666
http://link.springer.com/10.1007/BFb0026666
http://dx.doi.org/10.1016/j.dss.2016.05.005
http://dx.doi.org/10.1016/j.dss.2016.05.005

[16] Opara, C., Wei, B., Chen, Y.: HTMLPhish: Enabling Accurate Phishing
Web Page Detection by Applying Deep Learning Techniques on HTML Analy-
sis. arXiv:1909.01135 (aug 2019), www.phishtank.comhttp://arxiv.org/abs/1909.
01135

[17] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, É.: Scikit-learn: Ma-
chine Learning in Python. Journal of Machine Learning Research 12(Oct), 2825–
2830 (2011), http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.htmlhttps:

//scikit-learn.org/stable/

[18] Saxe, J., Berlin, K.: eXpose: A character-level convolutional neural network with em-
beddings for detecting malicious URLs, file paths and registry keys. arXiv preprint
arXiv:1702.08568 (feb 2017), http://arxiv.org/abs/1702.08568

[19] Seifert, C., Welch, I., Komisarczuk, P.: Identification of Malicious Web
Pages with Static Heuristics. In: 2008 Australasian Telecommunica-
tion Networks and Applications Conference. pp. 91–96. IEEE (dec 2008).
https://doi.org/10.1109/ATNAC.2008.4783302, http://ieeexplore.ieee.org/

document/4783302/

[20] Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality (complete sam-
ples). Biometrika 52(3/4), 591–611 (1965)

[21] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout:
A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res.
15(1), 1929–1958 (jan 2014)

[22] Vaitkevicius, P., Marcinkevicius, V.: Comparison of Classification Algorithms
for Detection of Phishing Websites. Informatica 31(1), 143–160 (mar 2020).
https://doi.org/10.15388/20-infor404

[23] Vazhayil, A., Vinayakumar, R., Soman, K.: Comparative Study of the Detection
of Malicious URLs Using Shallow and Deep Networks. In: 2018 9th International
Conference on Computing, Communication and Networking Technologies (IC-
CCNT). pp. 1–6. IEEE (jul 2018). https://doi.org/10.1109/ICCCNT.2018.8494159,
https://ieeexplore.ieee.org/document/8494159/

[24] Verma, R., Das, A.: What’s in a URL. In: Proceedings of the 3rd ACM on Inter-
national Workshop on Security And PrivacyAnalytics - IWSPA ’17. pp. 55–63. ACM
Press, New York, New York, USA (2017). https://doi.org/10.1145/3041008.3041016,
http://dl.acm.org/citation.cfm?doid=3041008.3041016

[25] Wei, B., Hamad, R.A., Yang, L., He, X., Wang, H., Gao, B., Woo, W.L.: A Deep-
Learning-Driven Light-Weight Phishing Detection Sensor. Sensors 19(19), 4258 (sep
2019). https://doi.org/10.3390/s19194258

DMSTI-DS-T007-20-08 17

www.phishtank.com http://arxiv.org/abs/1909.01135
www.phishtank.com http://arxiv.org/abs/1909.01135
http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html https://scikit-learn.org/stable/
http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html https://scikit-learn.org/stable/
http://arxiv.org/abs/1702.08568
http://ieeexplore.ieee.org/document/4783302/
http://ieeexplore.ieee.org/document/4783302/
https://ieeexplore.ieee.org/document/8494159/
http://dl.acm.org/citation.cfm?doid=3041008.3041016

[26] Whittaker, C., Ryner, B., Nazif, M.: Large-Scale Automatic Classification of
Phishing Pages. The 17th Annual Network and Distributed System Secu-
rity Symposium (NDSS ’10) (2010). https://doi.org/10.1109/TDSC.2013.3,
http://www.isoc.org/isoc/conferences/ndss/10/pdf/08.pdf{%}5Cnhttp:

//research.google.com/pubs/pub35580.html

[27] Xiang, G., Hong, J., Rose, C.P., Cranor, L.: CANTINA+: A Feature-Rich
Machine Learning Framework for Detecting Phishing Web Sites. ACM
Transactions on Information and System Security 14(2), 1–28 (sep 2011).
https://doi.org/10.1145/2019599.2019606, http://dl.acm.org/citation.

cfm?doid=2019599.2019606https://www.ml.cmu.edu/research/dap-papers/

dap-guang-xiang.pdf

[28] Yang, P., Zhao, G., Zeng, P.: Phishing website detection based on multidi-
mensional features driven by deep learning. IEEE Access 7, 15196–15209 (2019).
https://doi.org/10.1109/ACCESS.2019.2892066

[29] Zhao, J., Wang, N., Ma, Q., Cheng, Z.: Classifying Malicious URLs Using Gated
Recurrent Neural Networks. In: International Conference on Innovative Mo-
bile and Internet Services in Ubiquitous Computing, pp. 385–394. Springer (jul
2019). https://doi.org/10.1007/978-3-319-93554-6_36, http://link.springer.com/
10.1007/978-3-319-93554-6{_}36

[30] Zhao, P., Hoi, S.C.: Cost-sensitive online active learning with application to ma-
licious URL detection. In: Proceedings of the 19th ACM SIGKDD international
conference on Knowledge discovery and data mining - KDD ’13. p. 919. ACM
Press, New York, New York, USA (2013). https://doi.org/10.1145/2487575.2487647,
http://dl.acm.org/citation.cfm?doid=2487575.2487647

DMSTI-DS-T007-20-08 18

http://www.isoc.org/isoc/conferences/ndss/10/pdf/08.pdf{%}5Cnhttp://research.google.com/pubs/pub35580.html
http://www.isoc.org/isoc/conferences/ndss/10/pdf/08.pdf{%}5Cnhttp://research.google.com/pubs/pub35580.html
http://dl.acm.org/citation.cfm?doid=2019599.2019606 https://www.ml.cmu.edu/research/dap-papers/dap-guang-xiang.pdf
http://dl.acm.org/citation.cfm?doid=2019599.2019606 https://www.ml.cmu.edu/research/dap-papers/dap-guang-xiang.pdf
http://dl.acm.org/citation.cfm?doid=2019599.2019606 https://www.ml.cmu.edu/research/dap-papers/dap-guang-xiang.pdf
http://link.springer.com/10.1007/978-3-319-93554-6{_}36
http://link.springer.com/10.1007/978-3-319-93554-6{_}36
http://dl.acm.org/citation.cfm?doid=2487575.2487647

	Foreword
	Introduction
	Related Works
	Research Methodology
	Algorithms Used in the Experiments
	Character Embedding.
	Recurrent Neural Network Layers.
	Prediction
	Stacking Ensemble

	Dataset
	Measures and Methods
	Classification Accuracy
	Welch's T-Test
	Shapiro–Wilk Test

	Experimental Design

	Experimental Results
	Conclusions
	References

